• Title/Summary/Keyword: Vane length

Search Result 58, Processing Time 0.026 seconds

An Analysis on Volumetric Displacement of Gerotor Pump/Motor Using Vane Length (회전날개 길이를 이용한 제로터 펌프/모터의 배제용적에 관한 연구)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.;Han, C.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.8-16
    • /
    • 2011
  • It is hard and complicated to analytically derive the volumetric-displacement formula of a gerotor pump/motor. Analytical formulas for calculating the volumetric-displacement are derived in this work, which is relatively easy and based upon vane lengths. The vane lengths mean the distances from axis of inner rotor or outer rotor to contact points between inner and outer rotors. Two kinds of formula were studied for two different kinematic motions of rotors. The first one is the case that outer rotor is fixed in space and inner rotor is in mixed motion of planetary revolution and rotation with respect to the spinning axis. And the second is the case that both inner and outer rotors simultaneously rotate. The proposed formula is verified through comparison with volumetric-displacement obtained from numerical CAD calculation.

Improvement of Maldistributed Air Velocity in the Vane Wheel of a Bowl Type Pulverizer (바울형 미분기 베인휠에서의 유속 불균일 개선에 관한 연구)

  • Park, Deok-Bae;Hur, Jin-Huek;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.2
    • /
    • pp.62-69
    • /
    • 2010
  • The stability of coal pulverizer in the 800 MW coal-fired plants is vital to maintain their performance. Thus, this study analyzed the uneven abrasion of the deflector and coal spillage due to the air velocity maldistribution in the vane wheel of a bowl-type pulverizer as it is a possible cause for problems of facility using pulverized coal. In addition, air flow in the underbowl of a bowl-type pulverizer was studied to check air velocity maldistribution in the vane wheel using numerical method. In an attempt to correct the maldistribution of air velocity, air flow of the modified duct vane was studied as enlarging the length of the duct vanes installed at the air inlet duct of the pulverizer and increasing the angle of inclination. It was found that modified duct vane make the velocity distribution at the vane wheel uniform. formed by the duct vanes installed at the air inlet duct of the pulverizer and swirling flow is the major factor in making the velocity distribution of vane wheel exit uniform. This can prevent the uneven abrasion of the deflector, which is one of the components inside the pulverizer and coal spillage.

  • PDF

Development of Gear-Type Vane Dampers to Replace Link-Type Vane Dampers in Marine FD Fans (선박용 강제통풍 팬의 기어식 베인댐퍼 성능평가)

  • Hur, Nam-Soo;Jang, Sung-Cheol;Lee, Kyung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.216-222
    • /
    • 2016
  • Thus, this study aimed to develop a gear-type vane damper in order to replace the link-type vane damper. To achieve this goal, the torque generated in a gear-type vane damper was analyzed, and a structural analysis was conducted. In addition, the fluid flow was analyzed according to the changes in the vane's angle, and experimental tests such as a dry-heat test and cold test were conducted considering the operating conditions of the vessels. Moreover, an appropriate actuator was selected for the developed gear-type vane damper, and studies on the reduction in the backlash due to the facing-pressure adjustment length and flow rate and leakage test due to the vane's angle were conducted.

Three-Dimensional Numerical Study on the Aerodynamic Characteristics around Corner Vane in Heavy-Duty Truck (대형 트럭 코너베인 주위의 공력특성에 관한 3차원 수치해석)

  • 김민호;정우인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.181-189
    • /
    • 2000
  • The aerodynamic characteristics of large transport vehicle has become more and more important in recent vehicle design to improve driving performance in high speed cruising and raise the product valve with regard to a comfortable driving condition. Hence, detailed knowledge of the flow field around truck coner vane is essential to improve fuel efficiency and reduce the dirt contamination on vehicle body surface. In this study, three-dimensional flow characteristics around corner vane attached to truck cabin were computed for the steady, incompressible, and high speed viscous flow, adopting the RNG k-$\varepsilon$ turbulence model. In order to investigate the influence of configuration and structure of corner vane, computations were carried out for four cases at a high Reynolds number, Re=4.1$\times$106 (based on the cabin height). The global flow patterns, drag coefficient and the distributions such as velocity magnitude, turbulent kinetic energy around the corner vane, were examined. As a result of this study, we could identify the flow characteristics around corner vane for the variation of corner vane length and width. Also, suggest the improved structure to reduce the dirt contamination in cabin side.

  • PDF

Numerical Optimization of the Shape of Mixing Vane in Nuclear Fuel Assembly (핵연료 집합체 혼합날개형상의 수치최적설계)

  • Seo Jun-Woo;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.929-936
    • /
    • 2004
  • In the present work, shape of the mixing vane in Plus7 fuel assembly has been optimized numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. Standard $k-{\epsilon}$ model is used as a turbulence closure. The Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of friction loss. Bend angle and base length of mixing vane are selected as design variables. Thermal-hydraulic performances for different shapes of mixing vane have been discussed, and optimum shape has been obtained as a function of weighting factor in the objective function.

Measurement of Heat Transfer and Pressure Distributions on a Gas Turbine Vane Endwall (가스터빈 베인 끝벽의 열전달 특성 및 정압분포 측정)

  • Lee, Yong-Jin;Shin, So-Min;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2006
  • Heat transfer coefficients and static pressure distributions on a gas turbine vane endwall were experimentally investigated in a 5 bladed linear cascade. The Reynolds number based on an axial chord length and the cascade exit velocity was 500,000. Both heat transfer and pressure measurements on the vane endwall were made at the two different turbulence intensity levels of 6.8% and 10.8%. Detailed heat transfer coefficient distributions on the vane endwall region were measured using a hue detection based transient liquid crystals technique. Results show various regions of high and low heat transfer coefficients on the vane endwall surface due to several types of secondary flows and vortices. Heat transfer coefficient and endwall static pressure distributions showed similar trends for both turbulence intensity, however, the averaged heat transfer coefficients for higher turbulence intensity case was higher than the lower turbulence intensity case by 15%.

  • PDF

Optimization of Vane Diffuser in a Mixed-Flow Pump for High Efficiency Design

  • Kim, Jin-Hyuk;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.172-178
    • /
    • 2011
  • This paper presents an optimization procedure for high-efficiency design of a mixed-flow pump. Optimization techniques based on a weighted-average surrogate model are used to optimize a vane diffuser of a mixed-flow pump. Validation of the numerical results is performed through experimental data for head, power and efficiency. Three-level full factorial design is used to generate nine design points within the design space. Three-dimensional Reynoldsaveraged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximation and solved on hexahedral grids to evaluate the efficiency as the objective function. In order to reduce pressure loss in the vane diffuser, two variables defining the straight vane length ratio and the diffusion area ratio are selected as design variables in the present optimization. As the results of the design optimization, the efficiency at the design flow coefficient is improved by 7.05% and the off-design efficiencies are also improved in comparison with the reference design.

Performance Evaluation on Impeller Related Parameters Change in Centrifugal Pump of very Low Specific Speed (극저비속도 영역에서 임펠러 관련인자 변화에 따른 원심펌프 성능 평가)

  • Choung, Young-Dae;Lee, Kye-Bock
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • The numerical study was conducted to investigate the pump performance due to impeller related parameters change in centrifugal pump of very low specific speed by using CFD code. A small centrifugal pump whose specific speed is $N_s=76.2$ was used, and the performance characteristics were discussed for different number of vanes, rotational speed, and the length and height of vane. The numerical results at a very low specific speed show that the increase of the number of vanes has little effect on improvement of output pressure but results in the reduction of pressure fluctuation, and that the head increases with the increase in the rotational speed. The decreasing the length of vane has a considerable reduction of the capacity coefficient in comparison with decreasing the height of vane.

The practical aprication of Cone Pressuremeter, PMT, Vane tests to site investigation (Cone Pressuremeter, PMT, Vane 시험을 이용한 지반조사 사례연구)

  • Yi, Chang-Tok;Koo, Ja-Kap;Kim, Jong-Su;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.323-330
    • /
    • 1999
  • The concepts of mounting a pressuremeter module behind a cone penetrometer was applied in the early 1980s. The pressuremeter module is of 40mm diameter with length / diameter ratio of 10 inflated by nitrogen gas. This cone pressuremeter(CPM) is used to obtain the ground characteristics consisted of mainly silty, clay and sand. Field tests such as SPT, PMT, Vane tests are also carried out to understand the ground condition. Undisturbed samples are obtained to carried out Lah tests. The results of these field and lab tests are presented, discussed in detail, and compared with each others.

  • PDF

A Study of Beat Transfer Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle (핵연료집합체에서의 대형이차와류 혼합날개의 열전달 특성에 관한 연구)

  • An, Jeong-Soo;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.24-31
    • /
    • 2006
  • Mixing vanes have been installed in the space grid of nuclear fuel rod bundle to improve turbulent heat transfer. Split mixing vanes induce the vortex flow in the cooling water to swirl in sub-channel of fuel assembly. But, The swirling flow decays rapidly so that the heat transfer enhancing effect limited to short length after the mixing vane. In thi present study, the large scale vortex flow(LSVF) is generated by rearranging the mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid. The streamwise vorticity generated by LSVF sustain two times more than that split mixing vane. Heat transfer in the rod bundle occurs greatly at the same direction to cross flow, and maximum temperature at the surface of bundle drops about 1.5K