• Title/Summary/Keyword: Vane Type

Search Result 193, Processing Time 0.021 seconds

Analytical Study on the Performance of a Rotary Vane Compressor (로타리 베인 공기압축기의 성능에 관한 수치해석)

  • Kim Hyun-Jin;Nam Bo-Young;Lee Gyeong-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.351-358
    • /
    • 2006
  • This paper presents analytical results of a rotary vane compressor performance when the compressor is used for air supply from underwater. Compression characteristics such as pressure and temperature in a compression chamber are analyzed. Volumetric and adiabatic efficiencies are calculated. Vane dynamics are also performed to give reaction forces on the vane from the cylinder inner surface and from vane slots. Compressor efficiency is about 34.9%, and about 55% of the compressor loss is produced by the friction between the vane nose and the cylinder wall. Volumetric efficiency is about 79.5%, and indicated efficiency is about 77.1%, which are comparable to other displacement type compressors. When roller was introduced between housing inner wall and vane tips, mechanical efficiency could be improved by as much as 24.9%, depending on the roller friction.

A Study on the Role of Notch and Radius Reduction Ratio in the Balanced Type Vane Pump (베인 펌프에서 노치와 반경 감소비의 역활에 관한 연구)

  • 김기동;조명래;문호지;배홍용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.533-539
    • /
    • 1997
  • Pressure ripple of hydraulic vane pump results form flow ripple due to pump geometry and reverse flow through the discharge port due to compressibility of fluid and result in vibration and noise of connected hydraulic elements. In a ba;anced type vane pump, cam ring curve is important factor to influence the flow ripple. Therefore, to reduce the now ripple, it has been required that optimal selection of seal region by proper design of cam ring and each port position, and notches for preventing the excessive reverse flow. This paper has been performed analytical study of compression characteristics with major design parameter in side plate and cam ring, and examined into the role of notch and radius reduction ratio.

  • PDF

A Study on the Role of Notch and Radius Reduction Ratio in the Balanced Type Vane Pump (베인 펌프에서 노치와 반경 감소비의 역할에 관한 연구)

  • 김기동;조명래;한동철;최상현;문호지
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.87-93
    • /
    • 1998
  • Pressure ripples of hydraulic vane pump results from flow ripples due to pump geometry and reverse flow through the discharge port due to compressibility of fluid and result in vibration and noise of connected hydraulic elements. In a balanced type vane pump, cam ring curve is important factor to influence the flow ripples. Therefore, to reduce the flow ripple, it has been required that optimal selection of seal region by proper design of cam ring and each port position, and notches for preventing the excessive reverse flow. This paper has been performed analytical study of compression characteristics with major design parameter in side plate and cam ring. and examined into the role of notch and radius reduction ratio.

  • PDF

Analysis of the Mathematical Model of a Variable Displacement Vane Pump for Engine Lubrication (엔진윤활용 가변 베인펌프의 수학적 모델 해석)

  • Truong, D.Q.;Ahn, K.K.;Lee, J.S.
    • Journal of Drive and Control
    • /
    • v.11 no.1
    • /
    • pp.14-24
    • /
    • 2014
  • Variable displacement vane-type oil pumps represent one of the most innovative pump types for industrial applications, especially for engine lubrication systems. This paper presents a complete and accurate mathematical model for a typical variable displacement vane-type oil pump. Firstly, its theoretical model is revised. Secondly, an analysis of power loss factors of this pump type is carefully investigated to optimize the modeling accuracy. Finally, the estimated pump performance using the complete pump model is verified by numerical simulations in comparison with the practical tests.

A Study of Turbulence Generation Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle (핵연료집합체에서의 대형이차와류 혼합날개의 난류생성 특성에 관한 연구)

  • An, J.S.;Choi, Y.D.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1819-1824
    • /
    • 2004
  • The common method to improve heat transfer in Nuclear fuel rod bundle is install a mixing vane in space grid. The previous split mixing vane is guides cooling water to swirl flow in sub-channel of fuel assembly. But, this swirl flow decade rapidly after mixing vane and the effect of enhancing the heat transfer vanish behind this short region. The large scale secondary vortex flow was generated by rearranging the inclined angle direction of mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid and the streamwise vorticity in subchannel with LSVF mixing vane sustain two times more than that in subchannel with split mixing vane. The turbulent kinetic energy and the Reynolds stresses generated by the mixing vanes have nearly same scales but maintain twice more than previous type.

  • PDF

A Study on Efficiency Improvement of Vane Damper of Marine Boiler FD FAN (중대형 보일러용 FD FAN의 베인 댐퍼 구조 개선에 관한 연구)

  • Kang, Bong-Sung;Park, Yool-Min;Kim, Sung-Moon;Jung, Soon-Jae;Yoo, Min-Gyung;Jang, Sung-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.375-380
    • /
    • 2008
  • This study have processed the developing of vane damper with accurate control by using gear which is a flow-control equipment of marine boiler's FD fan on this research. For the developing of vane damper, we have corrected some problem from welding & assembly process by changing the design, and for the case of an emergency case, we have applied the easy disassembly & assembly on that vane damper. Compared to Rink type vane damper in current, we have focused on high efficiency with low price of that new developing damper. For selection of actuator, we have tried to find the propriety with our developing focus. Also, we have developed a jig of assembly processing for high productivity with quality, it caused the best assembly performance with heat-treated & processed parts.

  • PDF

Numerical Analysis for Flow Distribution inside a Fuel Assembly with Swirl-type Mixing Vanes (선회 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gonghee;Shin, Andong;Cheong, Aeju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.186-194
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane installed at a spacer grid of the fuel assembly plays a role in improving the convective heat transfer by generating either swirl flow in the subchannels or cross flow between fuel rod gaps. Therefore, both configuration and arrangement pattern of a mixing vane are important factors that determine the performance of a mixing vane. In this study, in order to examine the flow distribution features inside $5{\times}5$ fuel assembly with swirl-type mixing vanes used in benchmark calculation of OECD/NEA, simulations were conducted with commercial CFD software ANSYS CFX R.14. Predicted results were compared to data measured from MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, the effect of swirl-type mixing vanes on flow pattern inside the fuel assembly was described.

A Study on the Pressure Rising Considered Fluid Inertia in the Notch Area of Balanced Type Vane Pump (노치 영역에서 유체 관성을 고려한 압력 평형형 베인 펌프의 압력 상승에 관한 연구)

  • 조명래;한동철;문호지;박민호;배홍용
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.168-175
    • /
    • 1996
  • This paper reports on theoretical study of the pressure overshoot in the delivery ports and pressure rising within balanced type vane pump. Pressure overshoot occur due to the accelerated fluid through the notch, so, result in pressure ripple, flow ripple, and noise. For calculating the pressure rising and fluctuations of pressure, we have modeled mathematically used continuity equation based on compressibility and momentum equation considered fluid inertia in the notch, and analyzed simultaneously. As a results of analysis, we have found oscillation of pressure and compression chamber pressure depend on the rotational speeds, bulk modulus of working fluid, notches, number of vane and camring. Using the model, notches have been shown to be important design factor in relaxing the rapid pressure rising and reducing the amplitudes of pressure overshoot.

  • PDF

A Study on the Cam Ring Deformation in a Balanced Type Vane Pump (유압 베인 펌프의 캠 링 변형에 관한 연구)

  • 조명래;한동철;양광식;박제승;최상현
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.59-64
    • /
    • 1998
  • This paper presents the deformation characteristics of cam ring in a balanced type vane pump. Cam ring is operated in the high-pressure condition. Therefore the local deformation of cam ring affects the characteristics of compression, vane motion and noise and vibration. We analyzed the deformation of cam ring for the three types by using the finite element method. The deformed shape of cam ring and the effects of deformation on the compression are presented. As a result of analysis, we know that the right hole of the cam ring has advantage for reducing the pressure overshoot.

AERODYNAMIC DESIGN OF A MULTI-FUNCTION AIR DATA SENSOR BY USING CFD AND WIND TUNNEL TEST (전산해석 및 풍동시험을 이용한 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C.;Hwang, I.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore, major performances are determined by aerodynamic characteristics of vane. In order to design the sensor compatible to the requirement, aerodynamic characteristics of sensors were investigated by using CFD and dynamic response analysis was also performed for transient performance. The final aerodynamic performance was measured by the wind tunnel test at Aerosonic and the results were compared with the present design. The results showed that the aerodynamic design using the CFD can be successfully used for the design of vane type multi-function air data sensor.