• Title/Summary/Keyword: Vane pump

Search Result 142, Processing Time 0.027 seconds

Optimization of Vane Diffuser in a Mixed-Flow Pump for High Efficiency Design

  • Kim, Jin-Hyuk;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.172-178
    • /
    • 2011
  • This paper presents an optimization procedure for high-efficiency design of a mixed-flow pump. Optimization techniques based on a weighted-average surrogate model are used to optimize a vane diffuser of a mixed-flow pump. Validation of the numerical results is performed through experimental data for head, power and efficiency. Three-level full factorial design is used to generate nine design points within the design space. Three-dimensional Reynoldsaveraged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximation and solved on hexahedral grids to evaluate the efficiency as the objective function. In order to reduce pressure loss in the vane diffuser, two variables defining the straight vane length ratio and the diffusion area ratio are selected as design variables in the present optimization. As the results of the design optimization, the efficiency at the design flow coefficient is improved by 7.05% and the off-design efficiencies are also improved in comparison with the reference design.

Design Optimization on 2 Vane Pump of Wastewater Treatment for Efficiency Improvement (효율향상을 위한 폐수처리용 2 Vane 펌프 설계 최적화)

  • KIM, SUNG;MA, SANG-BUM;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.277-284
    • /
    • 2021
  • This paper deals with multi-objective optimization using response surface method to improve the hydraulic performances of a 2 vane pump for wastewater treatment. For analyzing the internal flow field in the pump, steady Reynolds-averaged Navier-Stokes equations were solved with the shear stress transport turbulence model as a turbulence closure model. The impeller and volute variables were defined in the shape of the 2 vane pump. The objective functions were set to satisfy the total head at the design flow rate as well as to improve the efficiency. The hydraulic performance of the optimally designed shape was verified by numerical analysis results.

A Study on the Role of Notch and Radius Reduction Ratio in the Balanced Type Vane Pump (베인 펌프에서 노치와 반경 감소비의 역활에 관한 연구)

  • 김기동;조명래;문호지;배홍용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.533-539
    • /
    • 1997
  • Pressure ripple of hydraulic vane pump results form flow ripple due to pump geometry and reverse flow through the discharge port due to compressibility of fluid and result in vibration and noise of connected hydraulic elements. In a ba;anced type vane pump, cam ring curve is important factor to influence the flow ripple. Therefore, to reduce the now ripple, it has been required that optimal selection of seal region by proper design of cam ring and each port position, and notches for preventing the excessive reverse flow. This paper has been performed analytical study of compression characteristics with major design parameter in side plate and cam ring, and examined into the role of notch and radius reduction ratio.

  • PDF

A Study on the Role of Notch and Radius Reduction Ratio in the Balanced Type Vane Pump (베인 펌프에서 노치와 반경 감소비의 역할에 관한 연구)

  • 김기동;조명래;한동철;최상현;문호지
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.87-93
    • /
    • 1998
  • Pressure ripples of hydraulic vane pump results from flow ripples due to pump geometry and reverse flow through the discharge port due to compressibility of fluid and result in vibration and noise of connected hydraulic elements. In a balanced type vane pump, cam ring curve is important factor to influence the flow ripples. Therefore, to reduce the flow ripple, it has been required that optimal selection of seal region by proper design of cam ring and each port position, and notches for preventing the excessive reverse flow. This paper has been performed analytical study of compression characteristics with major design parameter in side plate and cam ring. and examined into the role of notch and radius reduction ratio.

  • PDF

Design for Cam Curve of a Oil Hydraulic Vane Pump for Vehicles′ Power Steering System (자동차 PS용 베인펌프의 캠곡선 설계)

  • 정석훈;정재연
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.157-162
    • /
    • 2004
  • The cam curve of a balance type vane pump consists usually of circular arcs and Archimedes' spirals. However, if they are connected directly together, the curve must have a few discontinuous points of the gradients and the motion of the vanes is no longer smooth. Designing data for an oil hydraulic vane pump used in power steering system were obtained by the acquisition of optimum cam profile data which can be available to reduce noises and vibrations through the minimization of cavitation with the improvement of suctional performance. The performance test is carried on the trial manufactures by measuring the volumetric and the mechanical efficiency. And from that result, maintaining the same characteristic as the conventional one in the relief pressure and noise level, the experimental pump discharges 0.7 $\ell$/min and shows nearly 3.5% enhancement in the total efficiency more than the conventional one.

Effects of the Impeller Shapes on the Non-Clogging and the Screw-type Centrifugal Pump Performances (논클로그 및 스크류식 원심펌프의 임펠러 형상이 펌프성능에 미치는 영향)

  • Kim, Dong-Joo;Suh, Sang-Ho;Sung, Sun-Kyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.81-89
    • /
    • 1998
  • In this study, the effects of the impeller shapes on the pump performances of the non-clogging and the screw-type centrifugal pumps are experimentally studied. The characteristics of total head, efficiency and power of the non-clogging pump increase as the number of vanes increases. The screw-type centrifugal pump with the linear-shape vane shows a little better performance than that of the screw-type centrifugal pump with the curved-shape vane. The differences in the characteristics of total head, efficiency and power are, however, insignificant. Therefore, it is advisable that, considering the convenience of pump manufacturing, the screw-type centrifugal pump with the linear-shape vane should be used. This study also compares the pump characteristics of the non-clogging pump and screw-type centrifugal pump. The characteristics of total head and efficiency of the non-clogging pump are better than those of the screw-type centrifugal pump. The screw-type centrifugal pump requires more shaft power than the non-clogging pump.

  • PDF

Design Optimization of 2 Vane Pump Impeller and Volute for Performance Improvement (성능 향상을 위한 2 Vane 펌프 임펠러 및 벌류트 설계 최적화)

  • KIM, SUNG;MA, SANG-BUM;CHOI, YOUNG-SEOK;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.395-403
    • /
    • 2020
  • In this paper, the performance characteristics of the impeller and volute in the 2 vane pump were investigated using response surface method (RSM) with commercial computation fluid dynamics (CFD) code. Design variables were defined with the impeller blade angle and volute area distribution. The objective functions were defined as the total head, total efficiency and solid material size of the 2 vane pump. The design optimization of the design variables was determined using the RSM. The numerical results for the reference and optimum models were compared and discussed in this work.

Performance Analysis of the Vertical Multi-stage Centrifugal Pump using Commercial CFD Code (상용 CFD코드를 이용한 입형 다단 원심펌프 성능해석)

  • MO Jang-Oh;KANG Shin-Jeong;SONG Geun-Taek,;NAM Cheong-Do;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.150-155
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is not only to confirm how much the effect of three kinds of blade inlet breadth (11mm, 11.5mm, 12mm) of impeller has influence on the performance of vertical multi-stage pump but also to make clear the cause about performance difference at the exit side of impeller and guide vane. The vertical multi-stage pump consisit of the impeller, guide, vane and cylinder. The grid of numerical analysis used to the vertical multi-stage pump is 18,000, 45,000, and 100000 cells in case of the impeller, guide vane, cylinder and total grid is 730,000 cells. The characteristics such as total pressure coefficient, total head, shaft horse power, power efficiency at the exit side of impeller and guide vane, discharge coefficient are represented according to flow rage changing.

  • PDF

An investigation of LPG fuel supply method for Liquid phase LPG injection system (LP가스연료 액상공급시스템 특성연구)

  • Kim, C.U.;Oh, S.M.;Choi, S.J.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.18-23
    • /
    • 2004
  • An experimental studies of conventional gasoline fuel pump were carried out to obtain fundamental data fur liquid phase LPG injection(LPLi) system. A regenerative type and a roller-vane type of pumps were investigated in various operational condition. The experiments were performed to obtain flow rate of LPG fuel as a function of pressure differences and temperatures. The regenerative pump had too low flow rate at some experimental conditions to use this pump system for LPLi fuel supply system. On the other hand, the roller-vane type pump can be applied to the system only if its check valve is modified. Cavitation might occur in this system which can result in system noise, flow rate variation, and pump durability problem. To solve these problems the system is needed to increase $NPSH_{re}$(required net positive suction head).

  • PDF

Design Optimization on Wastewater Treatment Pump of Satisfaction for High Head and Low Flow Rate (고양정 및 저유량을 만족하는 폐수처리용 펌프 설계 최적화)

  • KIM, SUNG;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.583-590
    • /
    • 2022
  • In this paper, the performance characteristics of the 2 vane pump for wastewater treatment were investigated using response surface method(RSM) with commercial computation fluid dynamics(CFD) software. Design variables of wastewater treatment pump were defined with the meridional plane of the 2 vane pump impeller. The objective functions were defined as the total head and the efficiency at the design flow rate. The hydraulic performance of optimum model was verified by numerical analysis and the reliability of the model was retained by comparison of numerical analysis and comparative analysis with the reference model.