• Title/Summary/Keyword: Vanadium(IV) complexes

Search Result 11, Processing Time 0.019 seconds

Study on Metal Cupferrate Complex (Part IV). Determination of Vanadium(IV) and Vanadium(V) Cupferrate Compositions (Metal Cupferrate Complex에 關한 硏究(第4報) Spectrophotometry에 의한 바나듐(IV) 및 바나듐(V)-Cupferrate 의 化學組成의 決定)

  • Kim, Si-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.147-152
    • /
    • 1964
  • Vanadium (IV) and vanadium (V) cupferrate compositions in benzene phase were determined by molar ratio method and continuous variation method spectrophotometrically at 450$m{\mu}$ or 445$m{\mu}$ of wavelength. Compositions of vanadium (IV) cupferrates, V(IV)/Cupf, varied from 1/2 to 1/4 with the acidity of solution from which the complexes were precipitated. The complexes precipitated were vanadium(IV) cupferrate($VCupf_4$) in solution with lower pH than 1.0, and vanadyl(IV) cupferrate ($VOCupf_2$) in solution with 1.8-4.3 of pH. It was considered, however, that the complexes in solution with 1.3-1.7 of pH might be hydrogen vanadyl(IV) cupferrate ($HVOCupf_3$) or nearly equimolar mixture of $VCupf_4\;and\;VOCupf_2$ complexes. Vanadium (V) cupferrate composition did not vary with the acidity of solution from which the complexes were precipitated. In solution with lower pH than 1.8, the complex precipitated was hydrogen vanadyl (V) cupferrate, $HVO_2Cupf_2$.

  • PDF

Synthesis and Characterization of Metal Complex Oxo Vanadium(Ⅳ) Complexes with Derivatives of Salicylaldoximes (옥심계 금속착물의 합성과 그 물성에 관한 연구 치환 살리실알데히드옥심의 바나듐(Ⅳ) 착물(1))

  • Lee, Kwang;Lee, Won Sik
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.611-616
    • /
    • 1995
  • Oxovanadium(IV) complexes with salicylaldoxime, o-vanilline oxime, 2-hydroxy-4-methoxybenzaldoxime, 2-hydroxy-5-methoxybenzaldoxime and 2-hydroxy-5-nitrobenzaldoxime were synthesized. The complexes have been characterized by elemental analysis, electric conductivity measurement, infrared spectrometry, electronic spectrometry, mass spectrometry, and thermal analysis. The results of elemental analysis were well coincided with the theoretical values. The values of molar conductance of the complexes in DMF implicated that the complexes were non-electrolyte. The characteristic stretching frequency of V=O appeared strong band in the range of $980{\pm}20\;cm^{-1}.$ All the complexes showed two d-d transition in visible spectra and two charge transfer transitions in ultraviolet spectra. Results of mass spectrometry of $VO(sal)_2\;and\;VO(van)_2$ indicated two peaks corresponding to vanadium containing ion(I) of 1 : 2(metal to ligand) chelate and a fragment ion(II) of 1 : 1 chelate due to loss of ligand radical from ion(I). The thermal analysis showed the endothermic peak due to the thermal decomposition.

  • PDF

Oxovanadium(IV) Complexes Containing VO(ONS) Basic Core: Synthesis, Structure, and Spectroscopic Properties

  • Jang, Yoon-Jung;Lee, Uk;Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.72-76
    • /
    • 2005
  • Some mononuclear oxovanadium(IV) complexes having the general formula [VOL(bidentate)] (1-4) of which L is tridentate ONS-donor salicylaldehyde S-methyldithiocarbazate (sal-mdtc$^{2-}$) or salicylaldehyde 4- phenylthiosemicarbazate (sal-phtsc$^{2-}$) and bidentate stands for 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized. The complexes were characterized by elemental analyses, FAB mass, UV, IR spectroscopy, and cyclic voltammetry. Two of the complexes [VO(sal-mdtc)(bpy)] (1) and [VO(sal-mdtc) (phen)] (2) were crystallographically characterized. The structures revealed that vanadium atom is octahedrally coordinated by the O, N, and S donor atoms of the tridentate ligand, the two N atoms of bidentate ligand, and the oxo atom. The oxygen donor, occupying an apical position has a trans-labilizing effect, resulting in elongation of the V-N bond. The cyclic voltammograms of the complexes exhibited one cathodic response in the range −d1.45 $\sim$ −f1.52 V due to the reduction of V(IV) to V(III).

Detection of Superoxide Anion and Singlet Oxygen in the Decomposition of Several Peroxovanadium(V) Complexes

  • Kanamori, Kan;Hata, Kaori;Shimoyama, Toshiyuki;Hayakawa, Shingo;Tajima, Hirotaka;Matsugo, Seiichi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.412-414
    • /
    • 2002
  • Several peroxovanadium(V) complexes with an organic chelate ligand decompose spontaneously, depending on the nature of the chelate ligand. The self-decomposition reactions of the dinuclear peroxovanadium(V) complex with 2-oxo-l,3-diaminopropane-N,N,N',N'-tetraacetate (dpot) and the peroxovanadium(V) complexes with N-carboxymethylhistidinate (cmhist) and histamine-N,N-diacetate (histada) accompany the reduction of vanadium(V) to vanadium(IV). This implies that the peroxide anion acts as a reducing agent and thus the peroxide is oxidized in the decomposition process of the peroxovanadium(V) complexes. The oxidized dioxygen species have been characterized spectrophotometrically. Superoxide anion has been detected in 2-3 % yields using the reduction of cytochrome c method and chemiluminescence method utilized MCLA as a fluorescer. Singlet oxygen has also been detected in higher yields on the basis of chemiluminescence of tryptophan.

  • PDF

V(IV) Species, Location and Adsorbate Interactions in VH-SAPO-42 Studied by ESR and Electron Spin-Echo Modulation Spectroscopies

  • Back, Gern-Ho;Yu, Jong-Sung;Lee, Hye-Young;Kim, Min-Sik;Lee, Yong-Ill
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.2
    • /
    • pp.95-109
    • /
    • 2007
  • Vanadium-incorporated aluminophosphate microporous molecular sieve VH-SAPO-42 has been studied by electron spin resonance(ESR) and electron spin-echo modulation (ESEM) spectroscopies to determine the vanadium location and interaction with various adsorbate molecules. The results are interpreted in terms of V(IV) ion location and coordination geometry. Assynthesized VH-SAPO-42 contains only vanadyl species with distorted octahedral or trigonal bipyramidal coordination. Vanadium incorporated into H-SAPO-42 occupied extra-framework site. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. Species A is identified as a $VO(H_2O)_2^{2+}$ complex coordinated to three framework oxygen atoms bonded to aluminum. When hydrated VH-SAPO-42 is dehydrated at elevated temperature by calcination, species A loses its water ligand and transforms to $VO^{2+}$ ions coordinated to three framework oxygens (species B). Species B reduces its intensities significantly after treatment with $O_2$ at high temperature, thus suggesting oxidation of $V^{4+}$ to $V^{5+}$. When dehydrated VH-SAPO-42 makes contact with $D_2O$ at room temperature, the ESR signal of species A is regained. The species is assumed as a $VO(O_f)_3(D_2O)_2$ by considering three framework oxygens. Adsorption of deuterated methanol on dehydrated VH-SAPO-42 results in another new vanadium species D, which is identified as a $VO(CD_3OH)_2$ complex. When deuterated ethylene is adsorbed on dehydrated VH-SAPO-42, another new vanadium species E identified as a $VO(C_2D_4)^{2+}$, is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF

The V(IV) Species, Locaton and Adsorbate Interaction in VH-SAPO-11 studied by ESR and ESEM

  • Back, Gernh-ho;Back, Seung-Chan;Park, Sung-Gun;Lee, Chul-wee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.1
    • /
    • pp.1-20
    • /
    • 2005
  • Vanadium-incorporated aluminophophate molecular sieve VH-SAPO-11 has been studied by electron spin resonanace (ESR) and electron spin echo modulation (ESEM) spectroscopies to determine the vanadium locatin and interaction with various adsorbate molecules. As-synthsized VH-SAPO-11 contains only vanady1 species with distored octahral coordination. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. Species A is suggested as a VO$(H_2O)_2^{2+$} complex coordinate to three framwork oxygen bonded to aluminum. When calcined, hydrate VH-SAPO-11 is dehydrated at elevated temperature, species A loses it water ligands and transforms to $VO^{2+}$ ions coordinated to three framework oxygens (species B). Species B reduces its intensities significantly after treatment with $O_2$at high temperature, thus suggesting oxidation of $v^{4+}$to $v^{5+}$. When dehydrated VH-SAPO-11 contacts with $D_2O$ at room temperature, the ESR signal of species A is observed. This species assumed as a $VO(O_f)_3(D_2O)_2$, by considering 3 framework oxygens. Adsorption of deuterated methanol on dehydrated VH-SAPO-11 results in another new vanadium species D, which is identified as a $VO(CD_{3}OH)$ complex. When deuterated ethanol is adsorbed on dehydrated VH-SAPO-11, another new vanadium species E identified as a $VO(C_{2}H_{5}OD)^{2+}$, is observed. When deuterated propanol is adsorbed on dehydrated VH-SAPO-11, a new vanadium species F identified as a $VO(C_{3}H_{7}OD)$, is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF

The Study on Location and Adsorbate Interaction for Vanadium Species in $VO^{2+}-SAPO-5$ by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopies

  • Back Gern-Ho;Park Sung-Gun;Lee Chul-Wee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.138-154
    • /
    • 2005
  • Vanadium-incorporated aluminophosphate molecular sieve $VO^{2+}-SAPO-5$ was studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM) spectroscopies to determine the vanadium structure and interaction with various adsorbate molecules. It was found that the main species at low concentration of vanadium is a monomeric vanadium units in square pyramidal or distorted octahedral coordination, both in oxidation state (IV) for the calcined hydrated material and in oxidation state (V) for the calcined material. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. It is suggested as a $VO(H_2O)_3^{2+}$ complex coordinated to two framework oxygen bonded aluminum. When calcined, hydrated $VO^{2+}-}SAPO-5$ is dehydrated at elevated temperature, a species loses its water ligands and transforms to $VO^{2+}$ ions coordinated to two framework oxygens (species B). Species B reduces its intensity, significantly after treatment with $O_2\;at\;600^{\circ}C$ for 5 h, thus suggesting oxidation of $V^{4+}\;to\;V^{5+}$. When dehydrated $VO^{2+}-SAPO-5$ contacts with $D_2O$ at room temperature, the EPR signal of species A is observed. Thus species assumed as a $VO^{2+}(O_f)_2(D_2O)_3$, by considering two framework oxygens. Adsorption of deuterated ethanol, propanol on dehydrated $VO^{2+}_{-}SAPO-5$ result in another new vanadium species E and F, respectively, which are identified as a $VO^{2+}-(CH_3CH_2OD)_3,\;VO^{2+}-(CH_3CH_2CH_2OD)_2$ complex. When deuterated benzene is adsorbed on dehydrated $VO^{2+}-SAPO-5$, another new vanadium species G, identified as a $VO^{2+}-(C_6D_6)$ is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF

Polarographic Behavior of Oxovanadium (IV) Complex of Mercaptopyridine N-Oxide

  • Shim, Yoon-Bo;Choi, Sung-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.225-230
    • /
    • 1987
  • The redox properties of 2-mercaptopyridine N-oxide (mpno) and its oxovanadium complex, $VO (mpno)_2$ have been studied by the use of polarography and cyclic voltammetry. The radical anion of mpno is generated in acetone and is adsorbed to the electrode to form an adsorption wave at -0.21 V vs Ag/AgCl electrode. The normal wave appeared at -0.50 V is attributed to the formation of radical anion. The $VO (mpno)_2$ exhibits one oxidation wave at +0.57 V, and two reduction waves at -1.07 V and -1.76 V vs. Ag/AgCl electrode; the oxidation is fully reversible one-electron process ($VO (mpno)_2\;{\leftrightarrow}\;VO(mpno)_2^+ + e).$ The reduction wave at -1.07 V is quasireversible and is arised from the formation of $VO (mpno)_2^-.$ The second reduction wave at -1.76 V is irreversible and this reduction process consists of two one-electron steps. The sulfur containing ligands seem to enhance the stability of lower oxidation state of vanadium while the oxygen or nitrogen donor of the ligands stabilize the higher oxidation state of vanadium when comparisons are made among several oxovanadium complexes.

Electrochemical Behavior of Oxovanadium (IV) Complex of Benzohydroxamic Acid (옥소바나듐 (IV) 과 벤조히드로옥사믹산 간에 형성되는 착물의 전기화학적 성질에 관한 연구)

  • Hi Sik Choo;Duk Soo Park;Yoon Bo Shim;Sung Nak Choi
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.281-286
    • /
    • 1989
  • The redox properties of benzophydroxamic acid (Hben) and its oxovanadium complex, $VO(Ben)_2$ has been studied by the use of polarograpy and cyclic voltammetry. The radical anions of Hben seem to be generated in acetone. The wave at -0.05V vs. Ag/AgCl electrode might be attributed to the formation of radical anion and the wave at -1.78V vs. Ag/AgCl electrode might be attributed the formation of radical dianion. The $VO(Ben)_2$ exhibits one oxidation wave at + 0.55V and two reduction waves at -0.15V and -1.30V vs. Ag/AgCl electrode; the oxidation is reversible one electron process $(VO(ben)_2 {\rightleftharpoons} VO(ben)^+ + e)$. The reduction wave at -0.15V is quasireversible and is arised from the formation of radical anion,$VO(Ben)_2^-$. The second reduction wave at -1.30V is irreversible and this reduction process produces vanadium(III). This oxygen containing ligand of Hben seems to reduce the stability of + 4 oxidation state of vanadium while the sulfur or nitrogen donor of the ligands stabilize the + 4 oxidation state of vanadium when comparisons are made among several oxovanadium complexes.

  • PDF