• Title/Summary/Keyword: Van der Waals Interaction

Search Result 67, Processing Time 0.022 seconds

High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems (Polycaprolactone, 디클로로메탄, 이산화탄소로 구성된 3성분계 고압 상거동 측정)

  • Gwon, JungMin;Shin, Hun Yong;Kim, Soo Hyun;Kim, Hwayong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.193-198
    • /
    • 2015
  • The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the $CO_2$/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the $CO_2$-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.

뉴로모픽 시스템용 시냅스 트랜지스터의 최근 연구 동향

  • Nam, Jae-Hyeon;Jang, Hye-Yeon;Kim, Tae-Hyeon;Jo, Byeong-Jin
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.4-18
    • /
    • 2018
  • Lastly, neuromorphic computing chip has been extensively studied as the technology that directly mimics efficient calculation algorithm of human brain, enabling a next-generation intelligent hardware system with high speed and low power consumption. Three-terminal based synaptic transistor has relatively low integration density compared to the two-terminal type memristor, while its power consumption can be realized as being so low and its spike plasticity from synapse can be reliably implemented. Also, the strong electrical interaction between two or more synaptic spikes offers the advantage of more precise control of synaptic weights. In this review paper, the results of synaptic transistor mimicking synaptic behavior of the brain are classified according to the channel material, in order of silicon, organic semiconductor, oxide semiconductor, 1D CNT(carbon nanotube) and 2D van der Waals atomic layer present. At the same time, key technologies related to dielectrics and electrolytes introduced to express hysteresis and plasticity are discussed. In addition, we compared the essential electrical characteristics (EPSC, IPSC, PPF, STM, LTM, and STDP) required to implement synaptic transistors in common and the power consumption required for unit synapse operation. Generally, synaptic devices should be integrated with other peripheral circuits such as neurons. Demonstration of this neuromorphic system level needs the linearity of synapse resistance change, the symmetry between potentiation and depression, and multi-level resistance states. Finally, in order to be used as a practical neuromorphic applications, the long-term stability and reliability of the synapse device have to be essentially secured through the retention and the endurance cycling test related to the long-term memory characteristics.

1,n-Alkanedithiol (n = 2, 4, 6, 8, 10) Self-Assembled Monolayers on Au(111): Electrochemical and Theoretical Approach

  • Qu, Deyu;Kim, Byung-Cheol;Lee, Chi-Woo J.;Uosaki, Kohei
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2549-2554
    • /
    • 2009
  • The structures of 1,n-alkanedithiol (n = 2, 4, 6, 8, 10) self-assembled monolayers (SAMs) on a Au(111) substrate were investigated by electrochemical measurements and theoretical calculations. The results of the experimental techniques indicated that the dithiols, except n = 2, showed an upright molecular structure in the SAMs, in which alkanedithiols were bound to the Au surface via only one thiol functionality and the other one faced up to the air. The results also suggested that the formed dithiol SAMs were densely packed and highly oriented. Except ethanedithiol, which was thought to form a bilayer, the reductive desorption peak potentials of 1,n-alkanedithiol (n = 4, 6, 8, 10) SAMs were more negative than those of the corresponding monothiol ones in 0.1 M KOH solutions. This illustrates that the dithiol SAMs had higher stability than the corresponding monothiol ones. The major part of the high stability may be attributed to the van der Waals interaction among the sulfur atoms on top of the dithiol SAMs. The molecular modeling calculation showed that the structures of dithiol SAMs were similar to those of the corresponding monothiol SAMs and that all the dithiol SAMs, except ethanedithiol, were more stable than the corresponding monothiol SAMs. The calculated energy differences between dithiol and monothiol SAMs decreased with the increment of alkyl-chain length.

Dephosphorylation of Isopropyl phenyl-4-nitrophenylphosphinate (IPNPIN) onto 2-Alkylbenzimidazolide Anion in CTABr Micellar Solution (CTABr 미셀 용액속에서 2-Alkylbenzimidazole 음이온에 의해 추진되는 Isopropyl phenyl-4-nitrophenyl phosphinate(IPNPIN)의 탈인산화반응)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • This study is mainly focused on micellar effect of cetyltrimethyl ammonium bromide(CTABr) solution including alkylbenzimidazole(R-BI) on dephosphorylation of isopropyl-4-nitrophenylphosphinate(IPNPIN) in carbonate buffer(pH 10.7). The reactions of IPNPIN with R-$BI^{\ominus}$ are strongly catalyzed by the micelles of CTABr. Dephosphorylation of IPNPIN is accelerated by $BI^{\ominus}$ ion in $10^{-2}$ M carbonate buffer(pH 10.7) of $4{\times}10^{-3}$ M CTABr solution up to 89 times as compared with the reaction in carbonate buffer by no benzimidazole(BI) solution of $4{\times}10^{-3}$ M CTABr. The value of pseudo first order rate constant($k_{\Psi}$) of the reaction in CTABr solution reached a maximum rate constant increasing micelle concentration. Such rate maxima are typical of micellar catalyzed bimolecular reactions. The reaction mediated by R-$BI^{\ominus}$ in micellar solutions are obviously slower than those by $BI^{\ominus}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of R-$BI^{\ominus}$ in Stern layer of micellar solution. The surfactant reagent, CTABr, strongly catalyzes the reaction of IPNPIN with R-BI and its anion(R-$BI^{\ominus}$) in carbonate buffer(pH 10.7). For example, $4{\times}10^{-3}$ M CTABr in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\Psi}=98.5{\times}10^{-3}\;sec^{-1}$) of the dephosphorylation by a factor ca.25, when compared with reaction($k_{\Psi}=3.9{\times}10^{-4}\;sec^{-1}$) in $1{\times}10^{-4}$ M BI solution(without CTABr). And no CTABr solution, in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\Psi}=3.9{\times}10^{-4}\;sec^{-1}$) of the dephosphorylation by a factor ca.39, when compared with reaction ($k_{\Psi}=1.0{\times}10^{-5}\;sec^{-1}$) in water solution(without BI). This predicts that the reactivities of R-$BI^{\ominus}$ in the micellar pseudophase are much smaller than that of $BI^{\ominus}$. Due to the hydrophobicity and steric effect of alkyl group substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long alkyl groups of CTABr.

Nucleophilic Effect of Alkylbenzimidazole and Micellar Effect of Cetylpyridinium chloride(CPyCl) on Dephosphorylation of Diphenyl-4-nitrophenylphosphinate(DPNPIN) (Diphenyl-4-nitrophenylphosphinate(DPNPIN)의 탈인산화반응에 미치는 Alkylbenzimidazole의 친핵적 및 Cetylpyridinium chloride(CPyCl) 미셀 촉매효과)

  • Kim, Jeung-Bea;Kim, Hak-Yoon
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.565-575
    • /
    • 2010
  • This study is mainly focused on micellar effect of cetylpyridinium chloride(CPyCl) solution including alkylbenzimidazole(R-BI) on dephosphorylation of diphenyl-4-nitrophenylphosphinate(DPNPIN) in carbonate buffer(pH 10.7). The reactions of DPNPIN with R-BI$^{\ominus}$ are strongly catalyzed by the micelles of CPyCl. Dephosphorylation of DPNPIN is accelerated by BI$^{\ominus}$ ion in $10^{-2}M$ carbonate buffer(pH 10.7) of $4{\times}10^{-3}M$ CPyCl solution up to 100 times as compared with the reaction in carbonate buffer by no BI solution of $4{\times}10^{-3}M$ CPyCl. The value of pseudo first order rate constant($k^m_{BI}$) of the reaction in CPyCl solution reached a maximum rate constant increasing micelle concentration. Such rate maxima are typical of micellar catalyzed bimolecular reactions. The reaction mediated by R-BI$^{\ominus}$ in micellar solutions are obviously slower than those by BI$^{\ominus}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of R-BI$^{\ominus}$ in Stern layer of micellar solution. The surfactant reagent, cetylpyridinium chloride(CPyCl), strongly catalyzes the reaction of diphenyl-4-nitrophenylphosphinate(DPNPIN) with alkylbenzimidazole (R-BI) and its anion(R-BI$^{\ominus}$) in carbonate buffer(pH 10.7). For example, $4{\times}10^{-3}M$ CPyCl in $1{\times}10^{-4}M$ BI solution increase the rate constant ($k_{\Psi}=1.0{\times}10^{-2}sec^{-1}$) of the dephosphorylation by a factor ca.14, when compared with reaction ($k_{\Psi}=7.3{\times}10^{-4}sec^{-1}$) in $1{\times}10^{-4}M$ BI solution(without CPyCl). And no CPyCl solution, in $1{\times}10^{-4}M$ BI solution increase the rate constant ($k_{\Psi}=7.3{\times}10^{-4}sec^{-1}$) of the dephosphorylation by a factor ca.36, when compared with reaction ($k_{\Psi}=2.0{\times}10^{-5}sec^{-1}$) in water solution(without BI). This predicts that the reactivities of R-BI$^{\ominus}$ in the micellar pseudophase are much smaller than that of BI$^{\ominus}$. Due to the hydrophobicity and steric effect of alkyl group substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long alkyl groups of CPyCl.

X-ray Diffraction and Infrared Spectroscopy Studies on Crystal and Lamellar Structure and CHO Hydrogen Bonding of Biodegradable Poly(hydroxyalkanoate)

  • Sato Harumi;Murakami Rumi;Zhang Jianming;Ozaki Yukihiro;Mori Katsuhito;Takahashi Isao;Terauchi Hikaru;Noda Isao
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.408-415
    • /
    • 2006
  • Temperature-dependent, wide-angle, x-ray diffraction (WAXD) patterns and infrared (IR) spectra were measured for biodegradable poly(3-hydroxybutyrate) (PHB) and its copolymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(HB-co-HHx) (HHx=2.5, 3.4, 10.5, and 12 mol%), in order to explore their crystal and lamellar structure and their pattern of C-H...O=C hydrogen bonding. The WAXD patterns showed that the P(HB-co-HHx) copolymers have the same orthorhombic system as PHB. It was found from the temperature-dependent WAXD measurements of PHB and P(HB-co-HHx) that the a lattice parameter is more enlarged than the b lattice parameter during heating and that only the a lattice parameter shows reversibility during both heating and cooling processes. These observations suggest that an interaction occurs along the a axis in PHB and P(HB-co-HHx). This interaction seems to be due to an intermolecular C-H...O=C hydrogen bonding between the C=O group in one helical structure and the $CH_3$ group in the other helical structure. The x-ray crystallographic data of PHB showed that the distance between the O atom of the C=O group in one helical structure and the H atom of one of the three C-H bonds of the $CH_3$ group in the other helix structure is $2.63{\AA}$, which is significantly shorter than the sum of the van der Waals separation ($2.72{\AA}$). This result and the appearance of the $CH_3$ asymmetric stretching band at $3009 cm^{-1}$ suggest that there is a C-H...O=C hydrogen bond between the C=O group and the $CH_3$ group in PHB and P(HB-co-HHx). The temperature-dependent WAXD and IR measurements revealed that the crystallinity of P(HB-co-HHx) (HHx =10.5 and 12 mol%) decreases gradually from a fairly low temperature, while that of PHB and P(HB-co-HHx) (HHx = 2.5 and 3.5 mol%) remains almost unchanged until just below their melting temperatures. It was also shown from our studies that the weakening of the C-H...O = C interaction starts from just above room temperature and proceeds gradually increasing temperature. It seems that the C-H...O=C hydrogen bonding stabilizes the chain holding in the lamellar structure and affects the thermal behaviour of PHB and its copolymers.

Chemical Reactions in Surfactant Solution (I). Substituent Effects of 2-Alkylbenzimidazolide ions on Dephosphorylation in CTABr Solutions (계면활성제 용액속에서의 화학반응 (제1보). 미셀용액속에서의 탈인산화 반응에 미치는 2-알킬벤즈이미다졸음이온들의 치환기효과)

  • Young-Seuk Hong;Chan-Sik Park;Jung-Bae Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.522-532
    • /
    • 1985
  • The reactions of p-nitrophenyldiphenylphosphate (p-NPDPP) with anions of benzimidazole (BI) and its 2-alkyl derivatives (R-BI) are strongly catalyzed by the micelles of cetyltrimethyl ammonium bromide (CTABr). On the other hand, the first order rate constants $(k'_{R-BI^-})$ and the second order rate constants $(k_{m(R-BI^-)})$ of the reactions mediated by R-$BI^-$in the micellar pseudophase are much smaller than those mediated by $BI^-$. In order to explain the slower rates of the micellar reactions mediated by R-$BI^-$, we compared the concentration-ratios ([R-$BI^-$]/[$BI^-$]) with the first order rate constant-ratios $(k'_{R-BI^-}/k'_{BI^-})$ and the second order constant-ratios $(k_{m(R-BI^-)}/k_{m(BI^-)})$ for the reactions taking place in the micellar pseudophase. The rate constant-ratios were much smaller than the concentration-ratios. For example in a 5 ${\times}10^{-4}$M butyl-BI solution, the two ratios were 0.089 and 0.430 (for the first order) respectively, and in a $10^{-4}$M butyl-BI solution the former was 0.100 (for the second order). This predicts that the reactivities of R-$BI^-$ in the micellar pseudophase are much smaller than that of $BI^-$. Based on the values of several kinetic parameters measured for dephosphorylation of p-NPDPP mediated by R-$BI^-$, a schemetic model is proposed. Due to the hydrophobicity and the steric effect of the alkyl substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long cetyl groups of CTABr. Consequently, the movements of R-$BI^-$ bound to the micelle should be restricted, leading to decreased collison frequencies between the nucleophiles and p-NPDPP. We refer this as an "anchor effect". This effect became more predominent when a larger alky group in R-BI was employed and when a greater concentration of R-BI was used.

  • PDF