DOI QR코드

DOI QR Code

High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems

Polycaprolactone, 디클로로메탄, 이산화탄소로 구성된 3성분계 고압 상거동 측정

  • Gwon, JungMin (School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University) ;
  • Shin, Hun Yong (Department of Chemical and Biological Engineering, Seoul National University of Science and Technology) ;
  • Kim, Soo Hyun (Korea Institute of Science and Technology) ;
  • Kim, Hwayong (School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University)
  • 권정민 (서울대학교 화학생물공학부) ;
  • 신헌용 (서울과학기술대학교 화공생명공학과) ;
  • 김수현 (한국과학기술연구원 바이오소재연구센터) ;
  • 김화용 (서울대학교 화학생물공학부)
  • Received : 2014.06.09
  • Accepted : 2014.07.29
  • Published : 2015.04.01

Abstract

The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the $CO_2$/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the $CO_2$-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.

Polycaprolactone, Dichloromethane, 이산화탄소로 구성된 3성분계 고압 시스템의 상거동 측정 실험은 가변 부피 셀 장치를 이용해서 측정했다. 실험의 온도범위는 313.15 K에서 353.15 K, 압력은 약 300 bar까지 측정했으며 실험결과는 Polycaprolactone의 질량 분율이 1.0%, 2.0%, 3.0%일 때 온도와 이산화탄소/Dichloromethane의 질량 분율로 정리했다. 또한 실험 결과는 hybrid 상태방정식 (Peng-Robinson 상태방정식과 SAFT 상태방정식의 혼합형태) 을 이용하여 열역학적으로 검증하였으며, 혼합규칙은 반데르 발스의 단일 유체 혼합규칙을 사용했다. 이 다성분계 시스템에서 이원 상호 작용 파라미터 등, 각종 파라미터는 심플렉스 알고리즘을 통해 최적화했다.

Keywords

References

  1. Labet, M. and Thielemans, W., "Synthesis of Polycaprolactone: a Review," Chem. Soc. Rev., 38, 3484-3504(2009). https://doi.org/10.1039/b820162p
  2. Bhavsar, M. and Amiji, M., "Development of Novel Biodegradable Polymeric Nanoparticles-in-Microsphere Formulation for Local Plasmid DNA Delivery in the Gastrointestinal Tract," AAPS Pharm-SciTech 9, 288-294(2008). https://doi.org/10.1208/s12249-007-9021-9
  3. Subra, P. and Jestin, P., "Powders Elaboration in Supercritical Media: Comparison with Conventional Routes," Powder Technol., 103, 2-9(1999). https://doi.org/10.1016/S0032-5910(99)00007-8
  4. McHugh, M. A. and Krukonis, V. J., Supercritical Fluid Extraction: Principles and Practice, 2nd ed., Butterworth-Heinemann (1994).
  5. Rossberg, M., Lendle, W., Pfleiderer, G., Togel, A., Dreher, E.-L., Langer, E., Rassaerts, H., Kleinschmidt, P., Strack, H., Cook, R., Beck, U., Lipper, K.-A., Torkelson, T. R., Loser, E., Beutel, K. K. and Mann, T., Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, (2000).
  6. Shin, H. Y. and Wu, J., "Equation of State for the Phase Behavior of Carbon Dioxide-Polymer Systems," Ind. Eng. Chem. Res., 49, 7678-7684(2010). https://doi.org/10.1021/ie100903f
  7. Bae, W., Kwon, S., Byun, H.-S. and Kim, H., "Phase Behavior of the Poly(vinyl pyrrolidone) + N-vinyl-2-pyrrolidone + carBon Dioxide System," J. Supercrit. Fluids, 30, 127-137(2004). https://doi.org/10.1016/j.supflu.2003.08.003
  8. Gwon, J., Cho, D. W., Bae, W. and Kim, H., "High-Pressure Phase Behavior of Carbon Dioxide + Tetrahydrofurfuryl Acrylate and Carbon Dioxide + Tetrahydrofurfuryl Methacrylate Binary Mixture Systems," J. Chem. Eng. Data, 56, 3463-3467(2011). https://doi.org/10.1021/je2004879
  9. Shin, J., Lee, Y.-W., Kim, H. and Bae, W., "High-Pressure Phase Behavior of Carbon Dioxide + Heptadecafluorodecyl Acrylate + Poly(heptadecafluorodecyl acrylate) System," J. Chem. Eng. Data, 51, 1571-1575(2006). https://doi.org/10.1021/je060066v
  10. Gwon, J., Cho, D. W., Kim, S. H., Shin, H. Y. and Kim, H., "Phase Behaviour of the Ternary Mixture System of Poly(l-lactic acid), Dichloromethane and Carbon Dioxide," J. Chem. Thermodyn., 55, 37-41(2012). https://doi.org/10.1016/j.jct.2012.06.011
  11. Cho, S. H., Yoon, S. D. and Byun, H. S., "Bubble-point Measurement for the $CO_2$+diethylene Glycol Diacrylate and $CO_2$+diethylene Glycol Dimethacrylate Systems at High Pressure," Korean J. Chem. Eng., 30, 739-745(2013). https://doi.org/10.1007/s11814-012-0196-8
  12. Yoon, S. D. and Byun, H. S., "Experimental Measurement and Correlation of Phase Behavior for the $CO_2$+heptafluorobutyl Acrylate and $CO_2$+heptafluorobutyl Methacrylate Systems at High Pressure," Korean J. Chem. Eng., 31, 522-527(2014). https://doi.org/10.1007/s11814-013-0256-8
  13. Peng, D.-Y. and Robinson, D. B., "A New Two-Constant Equation of State," Ind. Eng. Chem. Fundam., 15, 59-64(1976). https://doi.org/10.1021/i160057a011
  14. Poling, B. E., Prausnitz, J. M. and O'Connell, J. P., The properties of Gases and Liquids, 5th ed., McGraw-Hill Book Company, (2000).
  15. Haynes, W. M. and Lide, D. R., CRC Handbook of Chemistry and Physics, 91st ed., CRC Press(2010).
  16. Analytical Methods Committee, "Uncertainty of Measurement: Implications of its use in Analytical Science," Analyst, 120, 2303-2308 (1995). https://doi.org/10.1039/an9952002303
  17. Chirico, R. D., Frenkel, M., Diky, V. V., Marsh, K. N. and Wilhoit, R. C., "ThermoMLAn XML-Based Approach for Storage and Exchange of Experimental and Critically Evaluated Thermophysical and Thermochemical Property Data. 2. Uncertainties," J. Chem. Eng. Data, 48, 1344-1359(2003). https://doi.org/10.1021/je034088i