• 제목/요약/키워드: Valve-opening pressure

검색결과 191건 처리시간 0.022초

Analysis of Design Parameters For Shunt Valve and Anti-Siphon Device Used to Treat Patients with Hydrocephalus

  • Lee, Chong-Sun;Jang, Jong-Yun;Suh, Chang-Min
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.1061-1071
    • /
    • 2001
  • The present study investigated design parameters of shunt valves and anti-siphon device used to treat patients with hydrocephalus. The shunt valve controls drainage of cerebrospinal fluid (CSF) through passive deflection of a thin and small diaphragm. The anti-siphon device(ASD) is optionally connected to the valve to prevent overdrainage when the patients are in the standing position. The major design parameters influencing pressure-flow characteristics of the shunt valve were analyzed using ANSYS structural program. Experiments were performed on the commercially available valves and showed good agreements with the computer simulation. The results of the study indicated that predeflection of the shunt valve diaphragm is an important design parameter to determine the opening pressure of the valve. The predeflection was found to depend on the diaphragm tip height and could be adjusted by the diaphragm thickness and its elastic modulus. The major design parameters of the ASD were found to be the clearance (gap height) between the thin diaphragm and the flow orifice. Besides the gap height, the opening pressure of the ASD could be adjusted by the diaphragm thickness, its elastic modulus, area ratio of the diaphragm to the flow orifice. Based on the numerical simulation which considered the increased subcutaneous pressure introduced by the tissue capsule pressure on the implanted shunt valve system, optimum design parameters were proposed for the ASD.

  • PDF

Transient simulation and experiment validation on the opening and closing process of a ball valve

  • Han, Yong;Zhou, Ling;Bai, Ling;Xue, Peng;Lv, Wanning;Shi, Weidong;Huang, Gaoyang
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1674-1685
    • /
    • 2022
  • The ball valve is an important device in the pipeline transportation system of nuclear power plants. Its operational stability and safety directly affect the normal working of nuclear power plants. In this study, the transient numerical simulation of the opening and closing process of a ball valve was conducted on the basis of the flow interruption capability experiment of the ball valve by using the moving mesh method and inlet and outlet variable boundary conditions. The flow rate and pressure difference with time of the opening and closing process of the ball valve were studied. The internal flow characteristics of the ball valve under different relative openings were analyzed in conjunction with the typical back-step flow structure. Results show that the transient numerical results agree well with the experimental results. The internal flow characteristics of the ball valve are similar at the same opening during opening and closing process. At small opening, the spool and outlet channels easily form a back-step flow structure. The disappearance and generation of backflow vortices during opening and closing occur at 85% opening and 75% opening, respectively. With the decrease in opening degree, the difference in vortex core area in the flow channel of the ball valve spool in the opening and closing process gradually appears. The research results provide some reference value for the design and optimization of ball valves.

모터구동 Flexible Wedge형 게이트밸브의 밸브 성능인자 Bounding Value에 대한 연구 (A Study on the Bounding Value of Valve Performance Parameters for Motor Operated Flexible Wedge Gate Valve)

  • 김대웅;유성연;박성근;이도환
    • 한국유체기계학회 논문집
    • /
    • 제10권5호
    • /
    • pp.46-53
    • /
    • 2007
  • Stem friction coefficient and valve factor are very important parameters for the evaluation of valve performance. In this study, the characteristics of stem friction coefficient and valve factor are analyzed, and thor bounding value is determined. The hydraulic testing is performed for many flexible wedge gate valves in the plant and statistical method is applied to the determination of bounding value. According to the results of this study, stem friction coefficient does not change much with differential pressure, and the bounding value of closing stroke is higher than that of opening stroke. The valve factor of valves with high differential pressure is higher than that of valves with medium differential pressure. It means valve factor is more sensitive to the differential pressure than the stem friction coefficient. Valve factor of the closing stroke is higher than that of opening stroke due to piston effect.

해양구조물용 고압 컨트롤 밸브에 대한 기초 연구 (A Fundamental Study on Offshore Structures of high pressure control valve)

  • 이치우;장성철
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.883-888
    • /
    • 2010
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD (Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin (C3H8O3). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve, Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

정밀제어용 버터플라이 밸브의 유동특성에 관한 연구 (STUDY ON FLOW CHARACTERISTICS FOR PRECISION CONTROL BUTTERFLY VALVE)

  • 박송묵;최훈기;유근종
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.21-26
    • /
    • 2014
  • Butterfly valve is a valve that controls fluid flow depending on the size of the opening angle. In general, the size of the opening angle of the valve increases, the fluid flow has also increased sharply. However, sometimes, in a specific piping system, a particular operating condition is needed that the fluctuation of the fluid flow should not have large amount although the size of opening angle of the valve become larger. In butterfly value, the shape of a typical thin plate, it is impossible to control a minute fluid, but in thick plate type, it is possible. In this study, we got the fluid flow control characteristics and pressure drop through both a numerical method and an experimental method about thick plate type. The numerical result and experimental result of flow coefficient show a similar pattern. In addition, we could find that minute fluid flow control was possible in the area of small size of the opening angle.

가스 파이프라인용 볼 밸브 내부유동의 실험적 연구 (Experimental Study on the Internal Flow of a Ball Valve used for a Gas Pipeline)

  • 김철규;이상문;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제27권3호
    • /
    • pp.311-317
    • /
    • 2016
  • This paper presents the flow characteristics of a ball valve used for a gas pipeline. Understanding of the internal flow of a ball valve is an important to analyze the physical phenomena of the valve. Present experimental study was performed by IEC 60534-2-3, the international standard for an industrial control valve testing procedure. Pressure measured at upstream and downstream of the valve, flow-rate and gas temperature passing the inside of the gas pipeline were measured with respect to valve opening rates. Throughout the experimental measurement of the ball valve, empirical equation of the pressure drop between the ball valve according to the mass flow rates is successively obtained using a polynomial curve fitting method. In addition, flow coefficient for determining the valve capacity is also analyzed with respect to valve opening rates using the curve fitting method.

해양구조물용 고압 컨트롤 밸브 수치해석 (A Numerical Analysis on High Pressure Control Valve for Offshore)

  • 이중섭;장성철;정휘원;남태희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1195-1200
    • /
    • 2008
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin($C_3H_8O_3$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

안전릴리프밸브의 블로우 다운 예측 및 유체-구조 연성해석 (Blowdown Prediction of Safety Relief Valve and FSI Analysis)

  • 최지원;장시환;이권희
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.729-734
    • /
    • 2017
  • 안전릴리프밸브는 배관라인 혹은 탱크의 과도한 압력을 완화하고 사용 적정압력 수준으로 유지해주는 장치이다. 안전릴리프밸브는 스프링 보닛에 통풍구가 대기 쪽으로 혹은 배출구 쪽으로 뚫려 있는지에 따라 배압의 변화에 직접적으로 영향을 받게 된다. 배압은 축적 배압(Built-up back pressure)과 부과 배압(superimposed back pressure)으로 나뉘게 되며 사용조건에 따라 배압의 특성이 달라진다. 본 연구에서 사용되는 안전밸브는 Conventional Safety Relief Valve로써, 배압의 특성을 가정하였다. 또한 개방력과 스프링력 사이의 힘의 평형 방정식을 세워 이론적 접근방법으로 초기 스프링 변위를 구하였다. 디스크가 받는 반력 즉 개방력과 스프링력을 비교하여 블로우 다운을 예측하였다. 블로우 다운은 설정 압력과 디스크 재닫힘 압력 간의 차이다. 본 연구는 ASME 규격 코드에 따라서 블로우 다운 시험 전에 전산 유동해석프로그램 CFX17.1을 이용하여 수치적으로 예측하였음을 밝힌다. 또한 유체-구조 연성해석(fluid-structure interaction analysis)을 통해 안전밸브 트림부의 안전성을 검토하였다. 향후, 시험과 전산수치해석 값을 서로 비교하여 블로우 다운 이론적 접근방법과 유동해석방법을 제안하고자 한다.

75톤 연소기용 연료개폐밸브의 특성에 대한 고찰 (A study on the characteristic of fuel shutoff valve for 75 $ton_f$ combustion chamber)

  • 이중엽;이수용
    • 항공우주기술
    • /
    • 제11권1호
    • /
    • pp.84-90
    • /
    • 2012
  • 연소기용 연료개폐밸브는 파일롯 공압으로 포핏을 열고 스프링 힘에 의해 닫음으로써 로켓엔진의 연료 유량을 제어한다. 현재 개발 중인 연소기 연료개폐밸브는 액추에이터에서 압력이 제거되더라도 유로부에 해당 압력이 존재한다면 스스로 열림을 유지하는 방식으로 설계되어 있다. 밸브의 성능을 평가하기 위해 밸브가 열리고 닫히는 특성에 따라 힘 평형 상태를 분석할 필요가 있다. 이를 위하여 밸브의 포핏이 열리기 위한 파일롯 압력과 닫히기 위한 유로부 압력을 힘 평형에 의해 조절되도록 설계하였다. 또한, 상용 소프트웨어인 Fluent CFD 해석을 통해 밸브의 고유유량계수를 구해보았다. 예측과 해석을 통해 획득된 결과들은 실험 결과와 비교하였다.

유동상사를 이용한 10인치 볼밸브 내부유동 분석 (Internal Flow Analysis for a 10 inch Ball Valve using Flow Similarity)

  • 이상문;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제26권4호
    • /
    • pp.386-392
    • /
    • 2015
  • Flow characteristics inside a 10 inch ball valve have been analyzed using three-dimensional numerical analysis and experiments. Continuity and three-dimensional Reynolds-averaged Navier-Stokes equations have been used as governing equations for the numerical analysis. The numerical model has been constructed through the grid dependency test and validation with the results of experiments to ensure reliability and numerical effectiveness. The shear stress transport (SST) model has been used as the turbulence closure. The experimental test-rig has been constructed to measure pressure, temperature and flow rate along the pipeline. Some valve opening angles have been tested to evaluate the flow characteristics inside the ball valve and pipeline. The results show that the rapid pressure variations is observed while the valve opening angle decreases, which caused by flow separation at the downstream of the ball valve.