• Title/Summary/Keyword: Valve performance

Search Result 1,251, Processing Time 0.023 seconds

Comparison of Cushion Performance on Parameter Changes in High Speed Pneumatic Cylinder Driving System (공기압 실린더 고속 구동시스템에서 파라미터 변화에 따른 쿠션성능 비교)

  • Kim, Do Tae;Jang, Zhong Jie
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.54-59
    • /
    • 2015
  • Due to the tendency to use high speed pneumatic cylinders to improve productivity, cushioning devices are adopted to decelerate the piston motion of pneumatic cylinders to reduce noise, vibration, and impact. This paper presents a comparison of the cushion characteristics of a high speed pneumatic cylinder with a relief valve type cushioning device. The system parameters selected are the damping coefficient, Coulomb friction, heat transfer coefficient, and cracking pressure of the relief valve in the air cushioning device. The integral of the time multiplied square error (ITSE) is used to quantitative measure the cushioning performance to assess the effect of varying these. The cushioning performance achieved good results when the ITSE is a minimum value. In a comparison of the piston displacement and velocity with the variations in system parameters, the heat transfer coefficients are not as significantly affected as the other. Also, the cracking pressure of the relief valve is mainly affected by the pressure and temperature in the cushion chamber.

Development of Stroke Sensing Cylinder Using Magnetic Sensor and Its Performance Estimation (자기 센서를 이용한 스트로크 센싱 실린더의 개발 및 성능평가)

  • 홍영호;이민철;이만형;양순용;진영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.278-282
    • /
    • 1995
  • We developed a part of storke sensing cylinder using magnetic sensor and estimated is performance. In this paper, for the performance estimation of stroke sensing cylinder. We consist of hydrallic system using solenoid valve with ON/OFF motion. In order to the control of solenoid valve for the position control of cylinder rod, PWM (Pulse Width Modulation) method which modulates time pulse width in proportion to error was used. A performance of cylinder rod with magnetic scales was evaluated by its hydraulic system.

  • PDF

Performance Analysis of Refrigeration System by Adjusting Manual Expansion Valve (수동식 팽창밸브 조정에 의한 냉동시스템의 성능 분석)

  • Yang, Hyung-Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.3
    • /
    • pp.113-119
    • /
    • 2011
  • This study analyzed facts affecting the performance of refrigeration systems after throttling actions, by changing the amount of refrigerant according to adjusting the opening of manual expansion valve to 80%, or 20% with vapor compressional refrigeration training equipment. At opening of 20%, the inlet and outlet temperature of compressor, subcooling and superheat, condenser heat, refrigeration effect, flash gas heat, coefficient of performance were higher, while at 80%, condensing pressure, evaporating pressure, compression work were higher, Thus, we could see changes in the amount of refrigerant affect the performance of the refrigeration system.

Effects of Intake Port Swirl and Fuel Injection System on the Performance and Exhaust Emissions in a Turbocharged DI Diesel Engine (터보 차져 DI 디젤엔진에 있어서 성능 및 배기배출물에 미치는 흡기 포트 선회 유동 및 연료 분사계의 성능)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.45-53
    • /
    • 2005
  • The purpose of this study is to analyze that intake port swirl and fuel injection system have an effect on the engine performance in a turbocharged D.I. diesel engine of the displacement 9.4L. As result of steady flow test, when the valve eccentricity ratio moved to cylinder wall, the flow coefficient and swirl intensity is increased. And as the swirl is increased, the mean flow coefficient is decreased, whereas the Gulf factor is increased. Through this engine test, it can be expected to meet performance and emissions by the following applied parameters; the swirl ratio is 2.43, injection timing is BTDC 13oCA and compression is 15.5.

  • PDF

System design of an air-cooled 3-stage reciprocating air compressor and performance testing (공랭식 3단 왕복동 공기압축기의 시스템 설계 및 성능시험)

  • Lee, An-Seong;Kim, Yeong-Cheol;Jeong, Yeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1380-1391
    • /
    • 1997
  • A 150 m$^{3}$/hr, 30 kg/cm$^{2}$, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially the volumetric efficiency. Temperature and stress analyses of the cylinder are performed using FEM modelings. The dynamics of valve system is analyzed and stress at the valve seat due to valve impact is evaluated. To reduce friction loss and wear at the compressor engine system, tribological design practices are suggested. Fin-type coolers are designed to dissipate generated compression heat at each stage. Finally, a prototype is manufactured and performance test is carried out utilizing an air tank. Performance results are compared to the design targets, other foreign specifications, and some quality standards.

Modeling and Performance Investigation of Forklift Transmission Control Valve System (지게차 변속제어밸브의 모델링 및 성능 검증)

  • Truong, D.Q.;Ahn, K.K.;Yoon, J.W.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2014
  • In forklifts, the machine performance is largely depended on the transmission performance. The aim of this paper is to develop a complete model of transmission control valve (TMV) system of a typical forklift using AMESim simulation tool. By using the developed TMV model, it becomes easy to investigate the system concept, working principle, and performance. In addition, an optimization on the TMV structure can be achieved by using this model with tunable parameters. Simulations have been carried out in a comparison with the actual experiments to verify the model.

A Study on Dynamic Characteristics of Directional Control Logic Valve (방향제어 조직밸브의 동특성에 관한 연구)

  • Lee, Il-Yeong;Oh, Se-Kyung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.172-179
    • /
    • 1988
  • A cartridge type hydraulic logic valve consists of simple two port valve whose poppet is closed or opened by means of pressure signal of a pilot line. Accordingly, the logic valve can be used not only for direction, flow and pressure control purpose but also for versatile function valve which enables all above mentioned functions. In addition, the valve has little internal leakage and pressure loss, superior response characteristics and easiness in making small block type valve. The above mentioned good performances being recognized recently, the logic valve has been used widely in the large scale hydraulic system such as a hydraulic press system, for the performance requirements of high speed operation and precise control characteristics. However, there are scarce reports until now, except for a few ones from Aachen Institute of Technology in West Germany, so it is necessary to be studied on development and investigation for practical application. This paper showed that the static and dynamic characteristics of a logic valve when the logic valve is used for directional control, to investigate the relations between the valve operating characteristics and the valve design conditions. From the above mentioned procedure, it was ascertained that the valve operation characteristics obtained by numerical analysis showed good agreements with experimental results. The representative results obtained are as follows; 1. During the valve is closing, the poppet velocity is almost constant in the logic valve. 2. The pilot pressure P sub(3) and the resistance R in the pilot line have much influences on the valve operation time. 3. Spring strength have not such a severe influence on the valve operating time. 4. The operation characteristics of the logic valve can be estimated with good accuracy comparatively by numerical analysis with the equations describing poppet motion.

  • PDF

Surface Electrical Conduction Properties of Composite Insulator Materials (옥외 애자용 재료의 표면 전기 전도 특성)

  • Hong, Hyun-Mun;Jeon, B.S.;Kim, J.G.;Kang, S.H.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.409-411
    • /
    • 2005
  • In this literature, we mose the design method of a proportional pressure control valve using valve system analysis and finite element method. And it is shown that a manufactured proportional pressure control valve character is well matched to tile theoretical analysis results. Also it is verified that the proposed valve has excellent performance compared to the other foreign products.

  • PDF

IV-TAP : Integrated Valve Train system Analysis Program (IV-TAP : 밸브트레인 통합 해석 프로그램)

  • 김지영;조명래;신흥주;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.258-262
    • /
    • 2000
  • This paper reports on the development of the analysis program of the valve train system, IV-TAP. It is essential to verify the stability of the design and to improve the performance of the system. In order to do that effi챠ently, it is required that integrated and interactive simulation analysis program. IV-TAP is developed in the base of the object-oriented, capsulation, modulization, OLE(objected linking and embedding) and variational design theory. So it contain the expandability and flexibility of the structure. In additon to that, it is programed to make the convenient user interface by using the visualization programming. It can support the modification of the valve element as well as the development of the valve system in the beginning. It is expected to reduce the money and effort for design the valve train system.

  • PDF

Characteristics of Lightweight Hydraulic Directional Control Valve for Emergency Steering in Hybrid Electric Commercial Vehicles (하이브리드 상용차용 경량 비상조향장치 유압방향제어밸브의 성능특성 연구)

  • Park, Kyungmin
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.291-297
    • /
    • 2013
  • Hydraulic directional control valves actuated by solenoid are used to control emergency steering in general or hybrid electric commercial vehicles. In this study, a new lightweight hydraulic directional control valve was designed by flow and structural simulation, and was fabricated; the basic operation, pressure differentials, and inner leakage flow were evaluated experimentally. In the results, the new model showed comparable performance with an existing imported valve. New valve was 80% the weight of the existing valve and had few components. Installing this valve on a truck body is easier because of its compactness and small size.