• Title/Summary/Keyword: Valve characteristics

Search Result 1,432, Processing Time 0.022 seconds

Static and Dynamic Characteristics of Electro - hydraulic Proportional Throttle Control Valve (전자 유압식 비례 교축 제어 밸브의 특성)

  • 오인호;이일영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.87-99
    • /
    • 1993
  • Nowadays, the cartridge valve can be controlled proportionally in remote place by adopting proportional solenoid and it becomes widely used as control component in hydraulic systems. Especially, multi stage proportional valve is attractive because it consumes less input power though its characteristics might slightly be defected. But, the system parameter should be carefully chosen to obtain optimistic characteristics. This study concerning three stage proportional throttle control valve is purposed to examine the influences of paameters to the dynamic characteristics. The typical transient and frequency responses of proportional throttle control valve were inspected through the experiments and compared to those derived from the theoritical analyses. And it was confirmed that the analyses are appropriate. Then the influences of various system parameters to the dynamic characteristics were examined by means of simulations. For the analyses, the basic equations derived from lumped model were linearized and the linearized equations were transformed to the transfer functions between inputs and outputs. Then the transient responses and frequency responses were obtained from transfer functions. 1. It is appropriate to estimate the dynamic characteristics of valve which has relatively sophisticated structure by means of system analyses using linearized equations. 2. Though the valve has two pilot stages, fairly good characteristics can be obtained by carefully choosing system parameters. 3. Main valve very quickly follows the movement of second pilot valve when the parameters of main valve(the oil supply passage and discharge passage fpr second pilot valve) are appropriately chosen.

  • PDF

A Study on Dynamic Characteristics of Directional Control Logic Valve (방향제어 조직밸브의 동특성에 관한 연구)

  • Lee, Il-Yeong;Oh, Se-Kyung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.172-179
    • /
    • 1988
  • A cartridge type hydraulic logic valve consists of simple two port valve whose poppet is closed or opened by means of pressure signal of a pilot line. Accordingly, the logic valve can be used not only for direction, flow and pressure control purpose but also for versatile function valve which enables all above mentioned functions. In addition, the valve has little internal leakage and pressure loss, superior response characteristics and easiness in making small block type valve. The above mentioned good performances being recognized recently, the logic valve has been used widely in the large scale hydraulic system such as a hydraulic press system, for the performance requirements of high speed operation and precise control characteristics. However, there are scarce reports until now, except for a few ones from Aachen Institute of Technology in West Germany, so it is necessary to be studied on development and investigation for practical application. This paper showed that the static and dynamic characteristics of a logic valve when the logic valve is used for directional control, to investigate the relations between the valve operating characteristics and the valve design conditions. From the above mentioned procedure, it was ascertained that the valve operation characteristics obtained by numerical analysis showed good agreements with experimental results. The representative results obtained are as follows; 1. During the valve is closing, the poppet velocity is almost constant in the logic valve. 2. The pilot pressure P sub(3) and the resistance R in the pilot line have much influences on the valve operation time. 3. Spring strength have not such a severe influence on the valve operating time. 4. The operation characteristics of the logic valve can be estimated with good accuracy comparatively by numerical analysis with the equations describing poppet motion.

  • PDF

A Study on the Dynamic Characteristics of ABS Hydraulic Control Valve (ABS 유압 제어 밸브의 동 특성 해석에 관한 연구)

  • 김병우;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.121-130
    • /
    • 2001
  • For the purpose of optimal control of anti-lock brake systems, precise dynamic characteristics analysis of hydraulic modulator, especially solenoid valve is necessary. However, most of researches so far have dealt with dynamic characteristic analysis of valve itself, and the results have been restrictively applied to the actual ABS modulator, where hydraulic pressure is acting. In this study, mathmatical modeling and experimental analysis were peformed in order to evaluate the valve dynamic characteristics when the hydraulic pressure is applied. High pressure on the master cylinder that affects on the valve dynamic characteristics have been analyzed quantitatively, and performance improvement methods have been suggested through parameter study. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be utilized as criteria for the optimal control of anti-lock brake systems.

  • PDF

A Study on the Steady Intake Flow Characteristics of the Intake 3-Valve Cylinder Head (흡기3밸브 실린더 헤드의 흡입 정상유동 특성에 관한 연구)

  • Chung, Jae-Woo;Lee, Ki-Hyung;Kim, Woo-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.880-885
    • /
    • 2000
  • Flow patterns and steady flow characteristics of an intake 3valve cylinder head are not obviously declared. Thus, in the study, the characteristics and limitation of intake flow coefficient which applied to multi intake valve engine are introduced. The flow coefficient and tumble characteristics are investigated by means of the steady flow test and flow visualization method. As the results, it is found that the intake flow rate is dominated by effective valve open area. In addition, this paper shows that the mass flow rate of intake 3valve engine is greater than that of intake 2valve engine and tumble flow of intake 3valve engine is superior to that of intake 2valve engine.

Characteristics of the Proportional Pressure Control Valve for 4 Wheel Steering System on the Passenger Car (승용차 4륜 조향(4WS) 장치용 비례 압력 제어 밸브의 특성에 관한 연구)

  • 오인호;장지성;이일영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.87-96
    • /
    • 1996
  • The proportional pressure control valve(PCV) is an essential component in the open loop controlled rear wheel steering gear of the four wheel steering(4WS) system on the passenger car. The valve should have versatile functions and higher performance. But, it is hard to find the proportional pressure control valve suitable for the 4WS system. In this paper, the determination of the valve parameters was studied by the stability discrimination and the characteristic analysis for the purpose of the development of a new PCV for the 4WS. The mathematical model of the valve was derived from the valve-cylinder system and the programme for numerical computation was developed. The transfer function of the system was obtained from the mathematical model. The characteristics of the valve were inspected through the experiment and compared to those obtained by numerical method. And then the stability discrimination of the system was done by root locus and the analysis of characteristics was done by the developed programme. From the experiment and the analysis of characteristics was done by the developed programme. From the experiment and the inspection, the appropriation of mathematical model and the usefulness of the programme were confirmed. And the parameters which might affect the performance of the valve can be determined by considering the stability discrimination, the characteristics analysis and required functions.

  • PDF

An experimental study on the steady flow around an intake valve exit (흡기 밸브 주위의 정상 상태 유동에 관한 실험적 연구)

  • 이상석;이석재;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.82-89
    • /
    • 1991
  • In order to investigate the characteristics of flow around the intake around the intake valve exit, discharge coefficient and the velocity near the valve exit in steady state were measured using X-type hot-wire. Valve and valve seat insert used in experiment were constructed as the same shape of production engine and the flow characteristics at various flow rates and valve lifts were investigated. From the results of discharge coefficient measurements, it is observed that there exists a similarity between the flow characteristics around the production engine valve and the typical poppet valve. Measurement of the velocity at the valve exit shows that the normalized radial velocity between the primary direction of flow and the valve angle is large, but the difference becomes smaller as the flow rate increases.

  • PDF

A Study on the Effect of Valve Timing on the Performance and Idle characteristics of 3-Cylinder LPG Engine (밸브 타이밍 변화가 3기통 LPG 엔진의 성능과 Idle 특성에 미치는 영향에 관한 연구)

  • 이지근;이한풍;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.27-34
    • /
    • 1997
  • The effects of the intake and exhaust valve timing to improve the engine performance in a spark ignition 3-cylinder LPG engine with a closed loop fuel supply system were studied. The engine torque and power have been measured using the 75kW EC-dynamometer while adjusting the optimal fuel consumption ratio with a solen- oid driver. As the results from this experiment, when intake valve opening is $12^{\circ}$ BTDC, intake valve closing is $36^{\circ}$ ABDC, exhaust valve opening is $12^{\circ}$ ATDC, and exhaust valve closing is $36^{\circ}$ BBDC respectively, the best torque characteristics in low and high speeds for a gives engine were obtained. And also we could find that the torque characteristics in low speeds were affected by the timing of exhaust valve open. An increased valve overlap by the EVC delay was ineffectual to the torque characte- ristics improvement in high speeds.

  • PDF

Effect of Valve Train Layout on Cam/Tappet Wear Characteristics of End Pivot Rocker Arm Type OHC Valve Train (끝단 지지 로커암형 오버 헤드 밸브트레인의 캠/종동자 마모 특성에 미치는 밸브트레인 레이아웃의 영향)

  • 이종원;장재영;김도중
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.184-192
    • /
    • 2001
  • Cam/tappet wear is one of the critical concerns in valve train deign. Maximum contact stress and minimum oil film thickness between the cam and tappet are usually checked for the estimation of wear characteristics. If the two extreme cases arise simultaneously, there is a strong possibility of cam/tappet wear. In this paper, effects of valve train layout on the wear characteristics were studied. Especially for swinging arm type valve trains, initial geometric layout must be very carefully defined to avoid wear problems. The study was performed fur an end pivot type OHC valve train, which had severe wear problems. Analysis results show that some geometric parameter affect very sensitively on the wear characteristics. Experiments were also performed for the original and modified valve trains, which strongly support the analysis results.

  • PDF

A Numerical Study of Valve Lift on the Flow Characteristics in Gasoline Engine (가솔린 엔진에서 밸브리프트에 따른 유동특성에 관한 수치해석적 연구)

  • Kim, Dae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.81-88
    • /
    • 2008
  • Flow characteristics have one of the effects in the process of engine. The numerical analysis makes it possible to predict the flow fields. This paper presents characteristics of steady flow according to variation of valve lift in a gasoline engine. The numerical computations have been made to observe the pressure distribution in accordance with the variable valve lift. Characteristics of tumble flow and swirl flow according to the variable valve has also been investigated. We could find that tumble ratio and swirl ratio is different between with/without PDA valve. The steady flow test was simulated through three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method. As a result, this study shows the possibility of the usage of numerical simulation to predict the flow characteristics for gasoline engine.

A Study on the Performance Analysis of Butterfly Valve in Water Fire Extinguishing System (수계소화시스템 버터플라이 밸브의 성능해석에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.91-96
    • /
    • 2007
  • Performance analysis of the butterfly valve in water fire extinguishing has been carried out. Performance analysis of the butterfly valve are investigated for torque characteristics, pressure loss and cavitations. The torque characteristics of disc are corrected for the angles of attack of valve disc by theoretical torque equation, and correction equation is added. The pressure loss coefficient on opening angle of valve has been formulated by applying the Carnot's equations. The torque characteristics, pressure loss and cavitations of the butterfly valve are analyzed for the ratio of disc thickness to the valve diameter. Cavitations are analyzed from the pressure loss coefficient of valve. The analysis of pressure loss and cavitation has been carried out change of the thickness ratio on opening angle of valve. These analysis data are utilize to necessary engineering data to develope of the butterfly valve.