• 제목/요약/키워드: Valve angle

검색결과 246건 처리시간 0.023초

Structural Stability of High-temperature Butterfly Valve Using Interaction Analysis

  • Lee, Moon-Hee;Son, In-Soo
    • 한국산업융합학회 논문집
    • /
    • 제23권6_1호
    • /
    • pp.881-888
    • /
    • 2020
  • A butterfly valve is a valve that adjusts flow rate by rotating a disc for about 90° with respect to the axis that is perpendicular to the flow path from the center of its body. This valve can be manufactured for low-temperature, high-temperature and high-pressure conditions because there are few restrictions on the used materials. However, the development of valves that can be used in a 600℃ environment is subject to many constraints. In this study, the butterfly valve's stability was evaluated by a fluid-structured interaction analysis, thermal-structure interaction analysis, and seismic analysis for the development of valves that can be used in high-temperature environments. When the reverse-pressure was applied to the valve in the structural analysis, the stress was low in the body and seat compared to the normal pressure. Compared with the allowable strength of the material for the parts of the valve system, the minimum safety factor was approximately 1.4, so the valve was stable. As a result of applying the design pressures of 0.5 MPa and 600℃ under the load conditions in the thermal-structural analysis, the safety factor in the valve body was about 3.4 when the normal pressure was applied and about 2.7 when the reverse pressure was applied. The stability of the fluid-structure interaction analysis was determined to be stable compared to the 600℃ yield strength of the material, and about 2.2 for the 40° open-angle disc for the valve body. In seismic analysis, the maximum value of the valve's stress value was about 9% to 11% when the seismic load was applied compared to the general structural analysis. Based on the results of this study, the structural stability and design feasibility of high-temperature valves that can be used in cogeneration plants and other power plants are presented.

버터플라이 밸브 하류 유동의 안정화에 관한 연구 (An Experimental Study on the Flow Stabilization in the Downstream Region of a Butterfly-Type Valve)

  • 박상원;이상우
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1417-1427
    • /
    • 2000
  • A flow stabilizer, which is made of a honeycomb and three different mesh screens, is located downstream of a butterfly-type valve, for the reduction of flow disturbances behind the valve. Mean flow and turbulence measurements as well as flow visualizations are conducted in the downstream region of the deepens the non-uniformity of the streamwise velocity component and turbulence. The mesh screens considerably reduce the turbulence and enhance the uniformity of mean velocities. The combination of the honeycomb and the three mesh screens results in an efficient reduction in the flow disturbances. In addition, the flow stabilizer proves to have a good performance in the suppression of turbulence at a short distance.

사판식 축 피스톤 펌프 밸브블록의 구조 해석에 관한 연구 (Structural Analysis of the Valve Block of a Swash Plate-Type Axial Piston Pump)

  • 김정화
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.52-57
    • /
    • 2016
  • A swash plate-type piston pump is a device used to discharge hydraulic fluid as the volume generated through the piston moves in the direction of the slope by adjusting the angle of its swash plate. In addition, the valve block internalized in the pump includes a flow path for intake from outside, a flow path for discharge, and a pilot conduit line to control discharge pressure and flux. In this study, a numerical analysis is conducted to improve the cracking of the valve block generated during process testing, and the developed pump is evaluated.

고속전자밸브를 이용한 유압전동장치의 속도 제어에 관한 연구 (A Study on Speed Control of Hydrostatic Transmission Using High Speed Solenoid Valve)

  • Park, S.H.;Lee, J.K.
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.148-157
    • /
    • 1995
  • This study deals with controlling the speed of Hydrostatic Transmission (HST) system throuth the control of pumping stroke of positive displacement pump using high-speed solenoid valve controlled by digital closed loop PWM method. The method which was done in this study is as follows: First, we modified original positive displacement pump and designed pumping stroke control system of HST by using the high-speed solenoid valve. Second, after experimenting static and dynamic characteristics on each signal flow, we identified system parameter of approximated model. Finally, to control the speed of HST, we controlled the angle of the swash plate of positive displacement pump by controlling the pressure in the control cylinder chamber. Test which was carried out in the laboratory shows that transient and steady state response could be improved by PID controller.

  • PDF

수치해석에 의한 버터플라이 밸브의 유량계수 및 유동특성에 관한 연구 (A Study on Flow Coefficient and Flow Characteristics for Butterfly Valve by Numerical Analysis)

  • 곽경민;조지승;김진대;이중형
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.62-66
    • /
    • 2012
  • The objective of this study is to simulate flow coefficient and flow characteristics such as velocity and pressure distribution for butterfly valve. Butterfly valves used in this study are 65A, 80A and 100A, in size, and of which the opening angle is varied. The flow coefficient, Kv, increases as the disc opening and valve size are increase. When using flow coefficient meanwhile specific curve of flow rate is also determined. The flow velocity between disc and seat increase as the disc opening decrease. The re-circulating zone is also observed in downstream behind disc.

공정제어루프 최종 조작부의 동작특성에 관한 연구 (Control Valve Positioner and Its effect on a Gas Turbine MW Control)

  • 김종안;신윤오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.728-730
    • /
    • 1998
  • The control valve positioner is a high gain plain proportional controller which measures the valve stem position and compares it to its setpoint which is the primary controller output. The positioner in effect is the cascade slave of the primary controller. In order for a cascade slave to be effecttive, it must be fast enough compared to the speed of its set point change. This paper describes the positioner transfer function and its effect on the entire control loop characteristic based on the simulation results. The result showed that the control valve and positioner determined the gain and phase angle in the high frequency range, while the primary controller and process determined those of the low frequency range. We can also anticipate the combined characteristics in the whole frequency range when each element's frequency response is known.

  • PDF

자동차 머플러용 EVV에 관한 연구 (A Study on the Exhaust Variable Valve for Automobile Muffler)

  • 박대언;박경석;박세종;손성만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.661-665
    • /
    • 2005
  • The muffler reducing the exhaust noise and vibration from the engine influence on the engine performance. Recently the semi-active muffler was developed and adopted to the actual use in consideration of the cost and technical side for noise and vibration. This study is about the recently developed semi-active muffler. This paper attempt to analyze the dynamic stress field on the gate plate by using the finite element methods. According to the analysis of the Exhaust Variable Valve, its spring has the most influence on its operation compare with effects of other components. The design parameters of the Exhaust Variable Valve such as the spring displacement, diameter, coil number, free angle and so forth were used.

  • PDF

해양구조물용 고압 컨트롤 밸브에 대한 기초 연구 (A Fundamental Study on Offshore Structures of high pressure control valve)

  • 이치우;장성철
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.883-888
    • /
    • 2010
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD (Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin (C3H8O3). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve, Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

해양구조물용 고압 컨트롤 밸브 수치해석 (A Numerical Analysis on High Pressure Control Valve for Offshore)

  • 이중섭;장성철;정휘원;남태희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1195-1200
    • /
    • 2008
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin($C_3H_8O_3$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

석유화학용 Ball Valve 유동 및 강도 수치해석 (A Numerical Analysis on Flow and Strength of Ball Valve for petrochemistry)

  • 이중섭;정휘원;장성철;남태희;박중호;윤소남
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.357-362
    • /
    • 2008
  • This study have goal with reverse engineering for petrochemistry of high pressure ball valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the petrochemistry high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the water($H_2O$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated inlet velocity 5m/s. CFD solver used STAR-CCM+ which is commercial code. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF