• Title/Summary/Keyword: Valve angle

Search Result 246, Processing Time 0.024 seconds

Influence of Design Variables on Flow Characteristics of Poppet Valve using Analysis of Means (평균분석을 이용한 설계변수가 포핏 밸브의 유동특성에 미치는 영향)

  • Jeong, Ja-Young;Choi, Eun-Ho;Kang, Young-Jin;Noh, Yoojeong;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.239-248
    • /
    • 2017
  • According to the structure, solenoid valve can be categorized as spool valve or poppet valve. While various research on spool valve which has simple structure and fine susceptibility to contamination has been conducted, poppet valve which has less susceptibility to contamination and advantage in a long time operation still need much research because of its complicated structure. In order to design the poppet valve, various parameters such as the diameter of the poppet, the angle of the poppet, the diameter of the disk, the spring stiffness, the spring preload and flow path structure should be considered. Conventional studies on poppet valve usually take only one design parameters and did not much focused on the effect of the parameters on flow characteristics. In this paper, the change of the flow characteristics according to the design parameters of the poppet valve for 3/2Way solenoid valve is analyzed. The previous studies and the results of initial model analysis was referred for the selection of the design parameters. The effects of design parameters on maximum pressure, minimum pressure, and pressure drop was examined using analysis of means(ANOM).

A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate (유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구)

  • Cho, Hyun-Sung;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.378-383
    • /
    • 2013
  • A butterfly throttle valve has been used to control the brake power of an SI engine by controlling the mass flow-rate of intake air in the induction system. However, the valve has a serious effect on the volumetric efficiency of the engine due to the pressure resistance in the induction system. In this study, a new intake air controlling valve named "Variable Geometry Throttle Valve(VGTV)" is proposed to minimize the pressure resistance in the intake system of an SI engine. The design concept of VGTV is on the application of a venturi nozzle in the air flow path. Instead of change of the butterfly valve angle in the airflow field, the throat width of the VGTV valve is varied with the operating condition of an SI engine. In this numerical study, CFD(computational fluid dynamics) simulation technique was incorporated to have an aerodynamics performance analysis of the two air flow controlling systems; butterfly valve and VGTV and compared the results to know which system has lower pressure resistance in the air intake system. From the result, it was found that VGTV has lower pressure resistance than the butterfly valve. Especially VGTV is effective on the low and medium load operating condition of an SI engine. The averaged pressure resistance of VGTV is about 49.0% lower than the value of the conventional butterfly throttle valve.

Flux Analysis of Air-conditioner Coupling (에어컨디셔너의 냉매배관을 연결하는 커플링의 유동해석)

  • Lee, Su-Yul;Kim, Woo-Seung;Cho, Soo;Sung, Uk-Joo;Park, Hee-Mun;Sim, Kyung-Jong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1031-1036
    • /
    • 2009
  • This study is intended to identify how quick disconnect coupling which connects with refrigerant piping of air-conditioner using R-22 refrigerant has effect on characteristics of flux. in the case where the air-conditioner installs utilizes quick disconnect coupling, COP has an effect on the quantity of cooling load because of changing flow rate and physical properties of refrigerant which flow into an entrance of expansion valve from coupling. Variation of flow rate can be regulated by changing expansion-contraction angle; $\alpha$ of an entrance and an exit of coupling. In this study, quick disconnect coupling is presented flow of coupling by using FLUENT as heat flow program. To have an effect on the expansion entrance valve, and by changing expansion-contraction angle; $\alpha$ of an entrance and an exit

  • PDF

Pressure Control of Staged Combustion Liquid Rocket Engine (다단연소사이클 액체 로켓엔진의 압력제어에 대한 연구)

  • Hwang, Changhwan;Lee, Kwangjin;Woo, Seongphil;Im, Ji-Hyuk;Jeon, Junsu;Lee, Jungho;Yoo, Byungil;Han, Yeoungmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.88-93
    • /
    • 2017
  • For the control of pre-burner combustion pressure, the open angle of TTR(Throttle for Thrust Regulation) valve was varied from $143^{\circ}$ to $185^{\circ}$ while testing of cold flow, ignition, combustion. The major performance variables of rocket engine and hydraulic performance of TTR valve regarding the open angle was verified. However the controllability of pre-burner combustion pressure was not verified due to the limitations of test. The comprehensive research will be done after supplementing these problems.

  • PDF

Evaluation of the Inherent Flow Coefficient of the Control Valve in the Liquid Propellant Rocket Engine (액체로켓 엔진 성능 보정용 제어밸브의 고유유량특성 계산)

  • Park, Soon-Young;Cho, Won-Kook;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.73-78
    • /
    • 2011
  • When a liquid rocket engine - specifically for the gas-generator cycle engine has throttle valves to control the thrust level and mixture ratio of the engine, it is possible to adjust the inherent flow characteristics of the control valves in order to secure a linearized correlation between the control-process-parameters like the thrust or mixture ratio of an engine and the throttle angle of valve. These linearities can reduce the complexity of the control process and make the process more explicit by ensuring the intuitive control. In this point, we proposed an algorithm within the frame of the in-house-developed program to obtain the control valves' inherent flow characteristics which satisfy the linearity, and calculated the sensitivities of control valves with respect to the throttle angle. Also, we compared the obtained inherent flow characteristics with the existed data and concluded the results are satisfactory.

Reciprocating pump modeling for diagnosis (이상 진단을 위한 왕복동식 펌프 모델링)

  • Lee, Jong Kyeom;Chai, Jang bom;Lee, Jin Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.330-331
    • /
    • 2014
  • A mathematical model is suggested for diagnosis on a reciprocating pump. To the end, kinematic, thermodynamic and fluidic analyses are carried out for a simplified reciprocating pump model. The pressure inside the cylinder is expressed as a function of the rotation angle of a crank axle. The mathematical model consists of one cylinder with suction and discharge valves and an accumulator. The effect of valve leakage on the discharge angle is investigated. The discharge angle difference between normal state and leakage state increases with the leakage extent.

  • PDF

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스템의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Chanduk;Park Jong-Ha;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.219-224
    • /
    • 2005
  • In order to investigate transient behaviour of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. For transient simulation of the main engine system, the ICV(Inter-Component Volume) method was applied. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1Km, flight Mach number 0.1 and maximum engine rpm.

  • PDF

Flow Characteristics in the Downstream Region of a Butterfly Valve with Various Disk Opening Angle (디스크 회전각에 따른 버터플라이 밸브 하류에서의 유동특성)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.267-272
    • /
    • 2006
  • Butterfly valves have been used for shut-off and throttling-control application in many industrial fields. Recently, they are frequently used for cooling water, oil system and ballast piping system of many larger vessels. They are especially suited for flow throttling control of heat exchangers in engine room. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics of butterfly valve inserted within circular pipe. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal systematic performance of the butterfly valve, wall pressure was measured at 6 points along the pipe by digital manometer. As the valve position moves to the closed side, flow separation increases and persists its tendency downstream until smoothly uniform flow developed. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 60 degrees.

  • PDF

Influence of valve plate configuration on torque ripple of a bi-directional bent-axis type hydraulic piston pump (양방향 회전형 사축식 유압 피스톤 펌프의 벨브 플레이트 형상이 토크 맥동에 주는 영향)

  • Kim, Sung-Hun;Hong, Yeh-Sun;Kim, Doo-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.231-237
    • /
    • 2007
  • The torque ripple of the hydraulic pumps for the Electro-hydrostatic Actuators can disturb the cylinder position control under slewing speed operation condition. In principle, the periodic change of the reaction torque generated by a piston type pump is highly dependent on the waveform of its cylinder chamber pressure. In case of uni-directional pumps operating at constant speed, the transient overshoot and rising slope of the cylinder pressure can be adjusted by the precompression angle and notch shape of their valve plates. Therefore, the influence of the valve plate geometry on the torque ripple magnitude of a bent-axis type piston pump for EHA application was investigated in this study. The results showed that any improvement of the torque ripple of such a bi-directional pump can not be achieved by modifying the valve plate geometry, regardless of its operation speed.