• Title/Summary/Keyword: Valve System

Search Result 2,199, Processing Time 0.029 seconds

Design of Intelligent Management and Service System for Gas Valve

  • Wang, Xiaoli;Wang, Feifei;Song, Yuhou;Zhang, Guirong;Wang, Shaohui
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1095-1104
    • /
    • 2020
  • This paper introduces a design scheme of intelligent gas valve management and service system based on Internet. This scheme adds sensor and general packet radio service (GPRS) modules to the traditional gas valve and establishes communication connection between gas valve and the server through wireless packet communication technology, which makes the traditional gas valve have the networking ability. Compared with the traditional gas valve management and service business, the method proposed in this paper is more convenient and efficient.

Neural Network Approach to Automated Condition Classification of a Check Valve by Acoustic Emission Signals

  • Lee, Min-Rae;Lee, Joon-Hyun;Song, Bong-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.509-519
    • /
    • 2007
  • This paper presents new techniques under development for monitoring the health and vibration of the active components in nuclear power plants, The purpose of this study is to develop an automated system for condition classification of a check valve one of the components being used extensively in a safety system of a nuclear power plant. Acoustic emission testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disc movement for valve failure such as wear and leakage due to foreign object interference in a check valve, It is clearly demonstrated that the evaluation of different types of failure types such as disc wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters, It is also shown that the leak size can be determined with an artificial neural network.

An Experimental Determination of a Swing Check Valve Closure Time in the Main Feed Water System of a Power Plant during Shut-down Process (발전소 주급수 계통 감발 과정에서의 스윙체크밸브 닫힘 시점의 실험적 결정)

  • Suh, Jin-Sung;Kim, Won-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.843-849
    • /
    • 2009
  • The reliable operation of a swing check valve in the main feed water system of a power plant is most essential for successful shout-down process. A failure to close the valve at proper time often leads to the instability of the main feed water system, or even to an emergency stop of the power plant. In reality it is a very difficult task to monitor the behavior of a swing check valve. Furthermore it is impossible to see the motion of the valve. In this work two measurements were carried out simultaneously to determine the precise valve closure time. The dynamic pressure measurements were made at the inlet and outlet regions of the swing check valve. The transient vibration of the valve housing in the direction of water flow was also measured, which enabled the measurement of the transient vibration of the valve housing near valve closure. By comparing the results produced from these measurements the precise valve closure time could be determined. By carrying out order tracking technique using the dynamic pressure signals and pump rpm signal, the complicated dynamic problems inside the main feed water system can be more easily dealt with. This measurement scheme might be implemented in a power plant on a real-time basis without much difficulty. If this could be implemented, valuable information essential for shut-down operations can readily be passed on to the main control room. The feasibility of this implementation was demonstrated by this experimental work.

Measurement of Fluid Film Thickness on the Valve Plate in Oil Hydraulic Axial Piston rumps (I) - Bearing Pad Effects -

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes . the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad.

Shape Optimization of a Segment Ball Valve Using Metamodels

  • Lee, Jin-Hwan;Lee, Kwon-Hee
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.553-558
    • /
    • 2010
  • This study presents the optimization design process of a segment ball valve that involves the reduction of the flow resistance coefficient and the satisfaction of the strength requirement. Numerical analysis of fluid flow and structural analysis have been performed to predict the flow resistance coefficient and the maximum stress of a segment ball valve. In this study, a segment ball valve incorporating the advantages of a ball valve and a butterfly valve has been devised. In general, ball valves are installed in a pipe system where tight shut off is required. Butterfly valves having smaller end-to-end dimension than ball valve can be installed in narrow spaces in a pipe system. The metamodels for the shape design of a segment ball valve are built by the response surface method and the Kriging interpolation model.

Modeling and Simulation of an EPPR Valve Coupled with a Spool Valve

  • Khan, Haroon Ahmad;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.30-35
    • /
    • 2019
  • EPPR (Electro-hydraulic Proportional Pressure Reducing) valves are pressure control valves. In this study, an independent metering valve (IMV), which is a combination of a spool valve opened and closed with the help of an EPPR valve, was discussed. The overall performance of the valve (IMV) was obtained by the respective modeling and simulation of the system. The valve investigated in this study is to be used for independent metering of hydraulic excavator actuator e.g. boom, arm, bucket etc. To design the model, continuity equations and force balance equations were used. The set of differential equations were then simulated in Simulink using ODE45 option in the configuration toolbox. The valve has to be able to control the flow rate going in and out of the cylinder separately, which is why the particular configuration was needed and selected.

Simulations of the Performance Factors on Vacuum System

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • In this work, the effects of fairly influential factors on performance of vacuum system, such as constant pressure and outgassing effect were simulated to propose the optimum design factors. Outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for vacuum systems were suggested based on the simulation results. And, the effects of throttle valve applications on vacuum characteristics were also simulated to obtain the optimum design model of variable conductance on high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure. Simulation results were plotted as pump-down curve of chamber and variable conductance of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

[ $H_{\infty}$ ] Pressure Control of Pneumatic Valve Driven by Piezoactuators (압전 작동기로 구동 되는 공압 밸브의 $H_{\infty}$ 압력제어)

  • Yoo, J.K.;Cho, M.S.;Choi, S.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.673-678
    • /
    • 2001
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust $H_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

  • PDF

An Investigation of 3 Port ER Valve for Controlling Electro-Rheological Fluids (ER유체 제어용 3포트 ER 밸브의 성능 고찰)

  • Jang, Sung-Cheol;Yum, Man-Oh
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.41-47
    • /
    • 2007
  • The structure of ER valve is simple that its designing and manufacturing are easy. The flow rate and pressure of ER fluids flowing in the ER valve are controlled only by electric field. In this study a three port ER valve is designed and manufactured. Then, the flow rate and pressure dorp of ER fluids flowing in the ER valve are measured. The system proposed controls flow rate and pressure fast. So, this system can be easily substituted for the existing hydaulic and pneumaitc control system.

Design of Position Controller for Proportional Solenoid Valve Using System Identification (시스템 식별을 이용한 비례솔레노이드밸브 위치제어기 설계)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.23-31
    • /
    • 2010
  • As the analysis and design technologies for electro-magnetic actuation has advanced over the years, proportional solenoid valve is gaining acceptance in wide range of industrial and commercial applications because of its superior characteristics over the conventional AOV or MOV, such as improved performance, reduced maintenance costs. This research deals with the position controller design of two-stage flow control solenoid valve. Investigation of steady-state characteristics and dynamic model identification for pilot disc is performed. Least square method to minimize the error magnitude of frequency response between the closed-loop and target system is applied to the design of PI-controller gains. From the experiments of step and frequency response, it is concluded that the controller meets the performance specification of target system, which verifies the usefulness of controller design method for proportional solenoid valve.

  • PDF