• Title/Summary/Keyword: Valve System

Search Result 2,203, Processing Time 0.045 seconds

Optimization Design and Development of the Proportional Pressure Control Valve Analysis Model of Active Body Control (차량 자세제어 시스템의 비례압력제어밸브 해석모델 개발 및 최적화 설계)

  • Kim, Dongmyung;Jang, Joosup;Son, Taekwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.127-134
    • /
    • 2014
  • Active body control system is an important system for determining the driving stability and ride comfort of the vehicle. Active body control system is composed of a cylinder unit power supply unit, and control valve unit. Control valve is a proportional pressure control valve, the dynamic characteristics of the valve affects the performance of the active body control system. We have developed an analytical model, we analyzed the design parameters of the proportional pressure control valve. Further, by knowing the design parameters effect on the system and to optimize the design parameters, and improved performance of the dynamic properties.

Analysis of the Dynamic Characteristics of Pressurized Water Discharging System for Underwater Launch using ATP (수중발사를 위한 ATP 방식 압축수 방출시스템의 동특성 해석)

  • Han, Myung-Chul;Kim, Jung-Kwan;Kim, Kwang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.567-572
    • /
    • 2009
  • The underwater launch system using an ATP consists of five parts: compressor tank, proportional flow control servo valve, expulsion spool valve, air turbine pump, and discharge tube. The purpose of this study is to develop an underwater launch system using an ATP and to verify the validity of the system. The proportional flow control servo valve is modeled as a 2nd order transfer function. The projectile is ejected by pressurized water through the air turbine pump, which is controlled by expulsion valve. The mathematical model is derived to estimate the dynamic characteristics of the system, and the important design parameters are derived by using simulations. The computer simulation results show the dynamic characteristics and the possibility of control for underwater launch system.

A Study on the Friction Force Onaracteristics of Valve Train System in Gasoline Engine (가솔린기관의 밸브트레인 마찰특성)

  • 윤정의;이만희;김재석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.30-37
    • /
    • 1998
  • It is well known that reduction of friction loss due to the valve train system greatly affects on improvement of fuel economy in internal combustion engine. In order to investigate friction characteristics of valve train system we carried out friction force measurement using test rig developed by ourselves. From test results, we concluded that characteristics of lubrication and friction torque on the valve train system such as mixed and hydrodynamic was mainly governed the contact type between cam and tappet.

  • PDF

The Solenoid Valve Development Tests for Propellant Tank Pressurization System (추진제 탱크 가압용 솔레노이드 밸브 개발 시험)

  • Kim, Byung-Hun;Koh, Hyeon-Seok;Kwon, Oh-Sung;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.813-816
    • /
    • 2011
  • The actuation and leakage tests of solenoid valve for propellant tank pressurization system have been conducted. The response time of solenoid valve manufactured is satisfactory to perform requirement. However, leakage was found at the upper part seat of relief valve inside solenoid valve. Solenoid valve was disassembled in order to discover leakage causes. We found out that the upper seat of relief valve was damaged. Through this study, the development possibility of propellant tank pressurization solenoid valve was confirmed.

  • PDF

Endurance of Pneumatic Valve with a Multi-bender PZT Actuator (적층 벤더형 압전식 공압밸브의 내구 특성)

  • Yun, So-Nam;Park, In-Sub
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.31-36
    • /
    • 2014
  • In this paper, pneumatic valve which consists of valve body, valve controller, nozzle and a multi-bender PZT actuator was suggested and fabricated. The fabricated pneumatic valve was experimented for performance evaluation. From the experimental results, we know that the flow rate of the suggested valve is 23 lpm at the pressure difference of 1bar and the maximum flow rate is 30 lpm at the pressure difference of 4 bar. The flow rates after endurance test of 9.8 million were 22.57 lpm and 28.62 lpm at the pressure difference of 1bar and 4bar, respectably. Finally, it was verified that the B10 life of the suggested pneumatic valve is over 50 million.

A Study on the Control Characteristics of FHA by Using ERF and Industrial Controller (ERF와 산업용 콘트롤러를 이용한 FHA의 제어특성에 관한 연구)

  • Jang Sung-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.95-100
    • /
    • 2005
  • Making the best use of the features of the electro-rheological(ER) valve, a two-port pressure control valve using ER fluids is proposed and manufactured. The ER-Valve characteristics are evaluated by changing the intensity of the electric field and the number of electrode. In addition, the performance of the plate type ER-Valve is investigated by change the particle concentration of the ER fluid. As only with electrical signal change to the ER-Valve in which ER fluid flowing, ER fluid flow is controlled, so development of simple ER-Valves have been tried. The ER-Valves and pressure drop check method are considered to be applied to the fluid power control system. Using the minかnぉd pressure control valve, a one-link manipulator with FHA in robot system is driven. As a result, it is experimentally confirmed that the pressure control valve using ER fluids is applicable to use in driving actuator. If it applies characteristics of the ER fluids, it will be able to apply in the control system fir the ER Valve which occurs from industrial controller(PLC).

Development of Tractor Three-point Hitch Control System using Proportional Valve (비례밸브를 이용한 트랙터 3점 히치 제어 시스템 개발)

  • Lee, Sang-Sik;Park, Won-Yeop
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.89-95
    • /
    • 2011
  • Tractor implements are mainly utilized for the tillage operation. The proposed hydraulic system control was implemented to experimental apparatus. An implement control system for tractor using proportional valve was fabricated to improve the working efficiency. Hydraulic circuit included the proportional solenoid valve and on/off solenoid valve and so on. This paper shows results of a specification and design of an implement control system for tractor using proportional valve for automation. It was conducted to evaluate response characteristics of the designed implement control system under experimental conditions of various input flow rates. The results of experiments showd that the response characteristics was sufficient to be used as the implement control system.

A Study on Pressure Characteristic in Various Inner Structure of Valves (밸브 운동부 구조 변화에 따른 압력특성에 관한 연구)

  • Hur, J.G.;Oh, I.H.;Yang, K.U.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.77-82
    • /
    • 2010
  • In general, the control valves are essential components in hydraulic systems. Structural changes within the valves remain a challenge because many parameters of valve tend to interact in terms of static and dynamic performance. Therefore, the valve characteristics is applied directly to the stability of hydraulic system. Inner structure of the valve which is used mainly in the industries is made up poppet type and spool type. This paper made a description of the method for numerical analysis and modeling of the valve with a built-in moving part of four-type. Based on the physical parameters of the valves, a numerical model of objected valve is developed using the bond graph method. It is to verified the results that the moving part of four-type has an effect on pressure and flow characteristics. Also, It is analyzed the results which has an effect on response characteristic by angular of poppet valve face and inertia variation of the valve with a built-in moving part. In the results, it is confirmed that the rising and settling time vary with the shape of moving part in valve.

A Case Study of Root Cause Analyses and Remedies for High frequency Vibration of Globe Valve in Nuclear Power Plant Piping System (원자력 발전소 배관계 글로브 밸브의 고주파 진동 원인 분석 및 해결 사례)

  • Choi, Byoung-Hwa;Park, Soo-Il;Cheon, Chang-Bin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.394-399
    • /
    • 2005
  • A case history is presented pertaining to high frequency piping vibration and noise caused by globe valve in the spent fuel pool cooling system of nuclear power plant. Frequency analyses were performed on the system to diagnose the problem and develop a solution to reduce the piping vibration and noise. The source of the high frequency and noise energy was traced to the globe valve located immediately downstream of the centrifugal pump by performing valve throttling test. Measurements of vibration and noise are presented to show that the high frequency vibration and noise amplitude was dependent upon the valve disc position and flow rate. Strouhal vortex shedding frequencies were generated at the exit of the globe valve which exited structural resonance of valve disc and amplified the high frequency vibration and noise. The problem was identified as an interaction between the flow inside globe valve and the valve disc structure. Attempts to reduce the vibration and noise amplitudes of the piping system were successfully achieved by the modification of guide-disc diameter and disc-edge figure The valve disc was replaced by an alternative to eliminate the source of the harmful high frequency vibration and noise.

  • PDF

Reduction of Fire Main Pipe System's Vibration Using Back Flow Prevent Globe Valve (역류방지 글로브 밸브를 이용한 소화 주관계의 진동개선)

  • Park, Mi-You;Han, Hyung-Suk;Lee, Seuk-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.518-523
    • /
    • 2009
  • Main source of URN(Underwater Radiated Noise) which is related to the ship's survivability is divided into two groups. Cavitation is main source of URN when the speed of ship is upper than CIS(Cavitation Inception Speed). But when the speed of ship is lower than CIS, main source of URN is structure-borne noise on the hull which is originated from propulsion system, pump system or transmitted vibration of pipe system. In this paper, to reduce the vibration of discharge pipe and valve system, back flow prevent globe valve and new rubber mount are applied to the ship. As the result of applying new valve and mount, the vibration is reduced drastically.

  • PDF