• Title/Summary/Keyword: Valve Leak

Search Result 126, Processing Time 0.026 seconds

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Study on Evaluation of the Leak Rate for Steam Valve in Power Plant (발전용 증기밸브 누설량 평가에 관한 연구)

  • Lee, S.G.;Park, J.H.;Yoo, G.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.45-50
    • /
    • 2007
  • Acoustic emission technology is applied to diagnosis the internal leak and operating conditions of the major valves at nuclear power plants. The purpose of this study is to verify availability of the acoustic emission as in-situ diagnosis method. In this study, acoustic emission tests are performed when the pressurized high temperature steam flowed through gate valve(1st stage reheater valve) and glove valve(main steam dump valve) on the normal size of 4 and 8". The valve internal leak diagnosis system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, signal level analysis and RMS(root mean square) analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Study on the Real-Time Leak Monitoring Technique for Power Plant Valves (발전용 밸브누설 실시간 감시기술 연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Study on Evaluation of Internal Leak of Turbine Control Valve in Power Plant Using Acoustic Emission Signal Measurement (음향방출 계측에 의한 터빈 제어밸브 내부누설 평가연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.65-70
    • /
    • 2008
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the turbine major valves relating to safety for turbine operating and prevention of turbine trouble at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized electro-hydraulic control oil flowed through turbine electro-hydraulic controller oil check valve and turbine power/trip fluid solenoid valve in the condition of actual turbine operating. The acoustic emission method was applied to the valves at the site, and the background noise was measured far the abnormal plant condition. To judge for the leak existence ell the object valves, voltage analysis and frequency analysis of acoustic signal emitted from infernal leak in the valve operating condition are performed. It was conformed that acoustic emission method could monitor for valve internal leak to high sensitivity.

  • PDF

Leak Evaluation for Power Plant Valve Using Multi-Measuring Method

  • Lee, Sang-Guk;Park, Jong-Hyuck;Kim, Young-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.469-476
    • /
    • 2008
  • Condition based maintenance(CBM) for the preventive diagnosis of important equipments related to safety or accident in power plant is essential by using the suitable methods based on actual power plant conditions. To improve the reliability and accuracy of the measured value at the minute leak situation, and also to monitor continuously internal leak condition of power plant valve, the development of a diagnosis and monitoring technique using multi-measuring method should be performed urgently. This study was conducted to estimate the feasibility of multi-measuring method using three different methods such as acoustic emission(AE) method, thermal image measurement and temperature difference$({\Delta}T)$ measurement that are applicable to internal leak diagnosis for the power plant valve. From the experimental results, it was suggested that the multi-measuring method could be an effective way to precisely diagnose and evaluate internal leak situation of valve.

A scheme of leak detection model in a reservoir pipeline valve system using wavelet coherence analysis of injected pressure wave (주입 압력파의 웨이블릿 일관성 분석을 사용한 저수조-관로-밸브 시스템에서의 누수탐지모형 연구)

  • Ko, Dongwon;Lee, Jeongseop;Kim, Jinwon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.15-25
    • /
    • 2021
  • In this study, a method of leakage detection was proposed to locate leak position for a reservoir pipeline valve system using wavelet coherence analysis for an injected pressure wave. An unsteady flow analyzer handled nonlinear valve maneuver and corresponding experimental result were compared. Time series of pressure head were analyzed through wavelet coherence analysis both for no leak and leak conditions. The leak information can be obtained through either time domain reflectometry or the difference in wavelet coherence level, which provide predictions in terms of leak location. The reconstructed pressure signal facilitates the identification of leak presence comparing with existing wavelet coherence analysis.

Study on the Comparison of Piezoelectric Property of Acoustic Sensor for Valve Leak Diagnosis (밸브누설 진단용 PZT 및 Pb-Free 음향센서의 압전특성 비교 연구)

  • Lee, Sang-Guk;Park, Sung-Keun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3383-3388
    • /
    • 2007
  • To compare the sensor performance of AE leak diagnosis system which can measure valve leak conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured on valve of the simulated test system for power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, pressure difference, valve size and fluid using both piezoelectric acoustic emission sensor and Pb-Free acoustic emission sensor. The results of this study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve.

  • PDF

A Fundamental Study on Leak Detection System for Water Supply Valve Using Smart Bolt (상수도 밸브 누수 탐지용 스마트 볼트 적용의 기초 연구)

  • Park, Chul;Kim, Young-seok;Jung, Hae-Wook;Choi, Sang-sik;Lee, Yong-Beom
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.144-154
    • /
    • 2020
  • Purpose: This paper is a fundamental study on the applicability of the smart bolt developed for monitoring system to detect the leakage of water supply valve. Method: A leak detection experiments were conducted using the smart bolt having embedded strain sensors and accelerometer. The smart bolt used in study meets the allowable criteria of torque and tensile stress for water supply system, and it can be applied to a joint of the water supply valve by behaving well within the allowable limits. Result: As a result of the simulated leak tests, a leak signal at the valve leak point was detected in a band of 60Hz, and the main pipe leaking point was observed to produce a leak signal having much higher frequency than that of the valve leak point. This seems to result in a total coupled vibration under unconfined conditions of the pipes. Conclusion: The smart bolts appeared applicable to detecting a leaking signal from the water supply valve.

Study on the Fugitive Emissions of a PFA Lined Ball Valve through Helium Leak Detection (PFA 라이닝 볼밸브의 헬륨누설 검출 및 비산배출에 관한 연구)

  • Lee, Won-Ho;Kim, Dong-Yeol;Lee, Jong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.39-42
    • /
    • 2016
  • A PFA lined ball valve, which is machined with fluorinated resin PFA to its inner part for improving corrosion resistance, non-stickness, heat-resistance, has been widely used to the chemical/pharmaceutical industries, the semiconductor/LCD manufacturing processes, etc. with the high purity chemicals as working fluid. EPA stated that 60% of all fugitive emissions come from the valve stem packing in a typical petroleum or chemical processing plant. They monitor regulated components for leaks and maintain seal performance at acceptable levels. Korean industrial standards only deals with the bubble test for in-line leakage of valves, which has the detectable leak rate of $10^{-4}$ [$mbar{\cdot}L{\cdot}s^{-1}$], therefore, it is not sufficient to check fugitive emissions. In this study, we conducted Helium leak detection from a PFA lined ball valve and evaluated fugitive emissions according to ISO 15848-1, which has the detectable leak rate of $10^{-9}$ [$mbar{\cdot}L{\cdot}s^{-1}$], for manufacturing the high-reliable PFA lined ball valves against fugitive emissions.

Reoperation of Prosthetic Heart Valve; An Analysis of Operative Risks and Late Results (인공 심장판막의 재치환술 -수술 위험인자와 수술 결과의 분석-)

  • 김관민
    • Journal of Chest Surgery
    • /
    • v.28 no.1
    • /
    • pp.23-30
    • /
    • 1995
  • From January 1985 to December 1992, of 1257 patients who underwent a heart valve replacement 210 [16.8% underwent reoperation on prosthetic heart valves, and 6 of them had a second valve reoperation. The indications for reoperation were structural deterioration [176 cases, 81.5% , prosthetic valve endocarditis [25 cases, 11.6% , paravalvular leak [12 cases, 5.6% , valve thrombosis [2 cases, 0.9% and ascending aortic aneurysm [1 case, 0.4% . Prosthetic valve failure developed most frequently in mitral position [57.9% and prosthetic valve endocarditis and paravalvular leak developed significantly in the aortic valve [40%, 75% [P<0.02 . Mean intervals between the primary valve operation and reoperation were 105.3$\pm$28.4 months in the case of prosthetic valve failure, 61.5$\pm$38.5 months in prosthetic valve endocarditis, 26.8$\pm$31.2 months in paravalvualr leak, and 25.0$\pm$7.0 months in valve thrombosis. In bioprostheses, the intervals were in 102.0$\pm$23.9 months in the aortic valve, and 103.6$\pm$30.8 months in the mitral valve. The overall hospital mortality rate was 7.9% [17/26 : 15% in aortic valve reoperation [6/40 , 6.5% in reoperation on the mitral prostheses [9/135 and 5.7% in multiple valve replacement [2.35 . Low cardiac output syndrome was the most common cause of death [70.6% . Advanced New York Heart Association class [P=0.00298 , explant period [P=0.0031 , aortic cross-clamp time [P=0.0070 , prosthetic valve endocarditis [P=0.0101 , paravalvularr leak [P=0.0096 , and second reoperation [P=0.00036 were the independent risk factors, but age, sex, valve position and multiple valve replacement did not have any influence on operative mortality. Mean follow up period was 38.6$\pm$24.5 months and total patient follow up period was 633.3 patient year. Actuarial survival at 8 year was 97.3$\pm$3.0% and 5 year event-free survival was 80.0$\pm$13.7%. The surgical risk of reoperation on heart valve prostheses in the advanced NYHA class patients is higher, so reoperation before severe hemodynamic impairment occurs is recommended.

  • PDF