• Title/Summary/Keyword: Valve Dynamics

Search Result 212, Processing Time 0.044 seconds

Design Criteria of Spring Stiffness for Pan Check Valve Using CFD Analysis (CFD 해석을 이용한 판형 체크 밸브에 대한 스프링 강성의 설계 기준)

  • Park, Ju-Yong;Baek, Seok-Heum;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.49-55
    • /
    • 2014
  • This paper examines the effects of spring characteristics and stiffness in relation to the characteristics of hydrodynamic force. Spring forces and stiffness determine the performance of this type of pan check valve and have an effect on the overall operation. The hydraulic efficiency of the pan check valve is relatively low compared to that of a common check valve. However, a pan check valve is structurally more stable than a common check valve. We implemented the optimum design to increase the flow rate and to resolve the suppression of the pressure drop according to the extent of the compression of the spring. From the results of a flow analysis, we demonstrate spring stiffness design criteria depending on the extent of the compression of the spring of pan check valve acting on the fluid at the inlet 1 MPa pressure.

A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate (유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구)

  • Cho, Hyun-Sung;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.378-383
    • /
    • 2013
  • A butterfly throttle valve has been used to control the brake power of an SI engine by controlling the mass flow-rate of intake air in the induction system. However, the valve has a serious effect on the volumetric efficiency of the engine due to the pressure resistance in the induction system. In this study, a new intake air controlling valve named "Variable Geometry Throttle Valve(VGTV)" is proposed to minimize the pressure resistance in the intake system of an SI engine. The design concept of VGTV is on the application of a venturi nozzle in the air flow path. Instead of change of the butterfly valve angle in the airflow field, the throat width of the VGTV valve is varied with the operating condition of an SI engine. In this numerical study, CFD(computational fluid dynamics) simulation technique was incorporated to have an aerodynamics performance analysis of the two air flow controlling systems; butterfly valve and VGTV and compared the results to know which system has lower pressure resistance in the air intake system. From the result, it was found that VGTV has lower pressure resistance than the butterfly valve. Especially VGTV is effective on the low and medium load operating condition of an SI engine. The averaged pressure resistance of VGTV is about 49.0% lower than the value of the conventional butterfly throttle valve.

A Numerical Study on the In-cylinder Flow and Fuel Distribution with the Change of Intake Valve Lift in a GDI Engine (GDI 엔진의 밸브리프트 변화에 따른 연소실내 흡기유동 및 연료분포에 대한 수치 해석적 연구)

  • Kim, K.B.;Song, M.J.;Kim, K.S.;Kang, S.H.;Lee, Y.H.;Lee, S.W.
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.100-105
    • /
    • 2013
  • While variable valve actuation or variable valve lift (VVL) is used increasingly in spark ignition (SI) engines to improve the volumetric efficiency or to reduce the pumping losses, it is necessary to understand the impact of variable valve lift and timing on the in-cylinder gas motions and mixing processes. In this paper, characteristics of the in-cylinder flow and fuel distribution for various valve lifts (4, 6, 8, 10 mm) were simulated in a GDI engine. It is expected that the investigation will be helpful in understanding and improving GDI combustion when a VVL system is used. The CFD results showed that a increased valve lift could significantly enhance the mixture and in-cylinder tumble motion because of the accelerated air flow. Also, it can be found that the fuel distribution is more affected by earlier injection (during intake process) than that of later injection (end of compression). These may contribute to an improvement in the air-fuel mixing but also to an optimization of intake and exhaust system.

Noise Analysis of Discharge Valve in a Linear Compressor Considering Fluid-valve-piston Interactions (유체-밸브-피스톤 연성을 고려한 선형압축기 토출 밸브의 소음 해석)

  • Lee, Jun-Ho;Jeong, Weui-Bong;Han, Hyung-Suk;Lee, Hyo-Jae;Jeong, Sang-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1237-1243
    • /
    • 2009
  • A computational procedure to estimate the noise radiated from a discharge valve system in a linear compressor was discussed and established. This procedure was composed of three steps. As the first step, the dynamic behavior of the valve system was estimated taking into consideration of fluid-valve-piston interactions. As the second step, the flow characteristics of refrigerant in the discharge valve system were estimated through computational fluid dynamics applying the behaviors of the valves as moving boundary conditions. The variations of pressures and velocities of fluid were converted to quadrupole noise sources. As the final step, the boundary element method based on Helmholtz equation was applied to predict the radiated acoustic pressure. The computational results by the presented procedure were experimentally validated.

Simulation Study on the Design of Air Brake Valve for Automobile Applications (공기식 브레이크 밸브의 요소설계)

  • Lee, Dong Woo;Jun, Min-Seung;Song, Jung Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.145-150
    • /
    • 2017
  • Air brake valves are widely used in automotive braking systems and the Korean automobile industry depends on importing them. Therefore, we should develop the technical expertise for their domestic production. In this study, air brake valves were analyzed that can be used in a variety of automobiles. Computational fluid dynamics analysis, static structural analysis, and hyper-elastic analysis were carried out. Before production of an air brake valve system, the performance of different parts has to be evaluated, for instance by using finite element analysis. The structural stability of the product can be determined using static dynamics. The compression behavior of the O-ring is predictable by nonlinear hyper elastic analysis, although errors are possible due to one-way loading. This simulation study can both save time and reduce costs compared to the development of experimental prototypes.

A Possible Origin of Ferromagnetism in Epitaxial BiFeO3 thin Films

  • Chang, Jae-wan;Jang, Hyun M.;Kim, Sang-Koog
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.108-110
    • /
    • 2006
  • We successfully enhanced the performance of a spin valve by inserting an ultra-thin layer of partially oxidized Fe in the pinned and free layers. With the exchange bias field kept large, the spin valve reached a GMR of 12%, which corresponded to a 55% increase in GMR when we compared it with that of spin valves without any inserted layer. The layer of partially oxidized Fe was more effective for improving the properties of the spin valve than the layer of partially oxidized $Co_{90}Fe_{10}$. Considering all the results, we can contribute the significant improvement to the combined effect of the modified local electronic structures at the Fe impurities and theenhanced spin-dependent reflections at the $\alpha-Fe_{2}O_{3} phase in the magnetic layer.

Valve core shapes analysis on flux through control valves in nuclear power plants

  • Qian, Jin-yuan;Hou, Cong-wei;Mu, Juan;Gao, Zhi-xin;Jin, Zhi-jiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2173-2182
    • /
    • 2020
  • Control valves are widely used to regulate fluid flux in nuclear power plants, and there are more than 1500 control valves in the primary circuit of one nuclear power plant. With their help, the flux can be regulated to a specific level of water or steam to guarantee the energy efficiency and safety of the nuclear power plant. The flux characteristics of the control valve mainly depend on the valve core shape. In order to analyze the effects of valve core shapes on flux characteristics of control valves, this paper focuses on the valve core shapes. To begin with, numerical models of different valve core shapes are established, and results are compared with the ideal flux characteristics curve for the purpose of validation. Meanwhile, the flow fields corresponding to different valve core shapes are investigated. Moreover, relationships between the valve core opening and the outlet flux under different valve core shapes are carried out. The flux characteristics curve and equation are proposed to predict the outlet flux under different valve core openings. This work can benefit the further research of the flux control and the optimization of the valve core for control valves in nuclear power plants.

Analysis of Flow Characteristics in a Groove of Hydraulic Spool Valve (유압 스풀밸브 그루브 내에서의 유동특성 해석)

  • Park, T.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • All of the hydraulic spool valves adopt radially grooved spools to avoid hydraulic locking. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the accurate Poiseuille flow characteristics inside single groove. The stream lines, velocity and pressure distributions are obtained for various groove widths, depths and shapes. The stream lines are highly affected by groove shape and there occurred large vortexes inside groove beyond a certain ratio of groove width to depth. Especially the U shaped groove restrains the occurrence of vortex. Therefore the numerical method adopted in this paper can be use in optimum designing of multi-grooved hydraulic spool valves.

  • PDF

Effect of Design Parameters of Power Steering System for Passenger Cars on the Vehicle Steering Characteristic (승용차용 파워 스티어링 시스템의 설계변수 변화에 따른 차량의 조향특성 해석)

  • 황성호;김홍석;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.38-45
    • /
    • 1996
  • Power steering systems play an important role for the vehicle handling characteristics and driver's steering center feeling during straightforward driving situation. In this paper, the rotary valve, the main component of power steering systems, is modeled and analyzed, and is combined with a 3-DOF(degree of freedom) lateral dynamics model of passenger cars to examine the effects of design parameters on the vehicle steering characteristics. The results can be applied to the development of advanced power steering systems for passenger cars such as electronically-con-trolled power steering system.

  • PDF

Optimal Engine Operation by Shift Speed Improvement for a CVT (CVT 변속속도 개선에 의한 엔진최적운전)

  • Lee, Hee-Ra;Kim, Hyun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.546-551
    • /
    • 2001
  • In this paper, an algorithm to improve the optimal engine operation is suggested by increasing the CVT shift speed. By rearranging the CVT shift dynamic equation, it is found that the CVT shift speed depends on the line pressure as well as the primary pressure. Based on the shift dynamics, an algorithm to accomplish a faster shift speed is presented by increasing the line pressure. In order to apply the algorithm, dynamic models of the line pressure control valve and the ratio control valve are obtained by considering the CVT shift dynamics and model based controllers are designed. It is found from the simulation results that fuel economy can be improved by 2% in spite of the increased hydraulic loss due to the increased line pressure.

  • PDF