• 제목/요약/키워드: Valve Dynamics

검색결과 213건 처리시간 0.026초

액셜 피스톤 펌프내 유압유 유동에 대한 수치해석적 연구 (Numerical Study on Hydraulic Fluid Flows Within Axial Piston Pumps)

  • 정종현;김종기;서용권
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.129-136
    • /
    • 2010
  • 액셜 피스톤 펌프는 유압시스템의 동력원으로 널리 사용되고 있으나, 펌프내의 유체유동에 관한 연구는 유체 압축성, 고속회전, 유량변화와 복잡한 형상 때문에 1차원 해석으로 수행되어졌다. 본 연구의 목표는 3차원 수치해석 방법을 이용하여 액셜 피스톤 펌프내의 유압유체 유동과 토출압 맥동의 생성과정을 이해하는 것이다. 시뮬레이션 모델의 수렴성 향상 및 강건성 확보를 위하여 밸브 플레이트 주위의 격자계는 육면체 격자로 구성하였다. 또한, 수치해석시 필요한 오일의 밀도와 압력의 관계는 실험식을 적용하였다. 3차원 수치해석의 결과는 실험결과와 비교적 잘 일치하였다.

QFT 를 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계 (Design of Force Control System for a Hydraulic Road Simulator using QFT)

  • 김진완;현동길;남양해;김영배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1109-1114
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

  • PDF

정량적 피드백 이론을 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계 (Design of Force Control System for a Hydraulic Road Simulator Using Quantitative Feedback Theory)

  • 김진완;현동길;김영배
    • 대한기계학회논문집A
    • /
    • 제31권11호
    • /
    • pp.1069-1076
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT(Quantitative Feedback Theory) is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. Tracking specification is satisfied with upper and lower bound tolerances on the steep response of the system to the reference signal. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

Design of Autonomous Cruise Controller with Linear Time Varying Model

  • Chang, Hyuk-Jun;Yoon, Tae Kyun;Lee, Hwi Chan;Yoon, Myung Joon;Moon, Chanwoo;Ahn, Hyun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2162-2169
    • /
    • 2015
  • Cruise control is a technology for automatically maintaining a steady speed of vehicle as set by the driver via controlling throttle valve and brake of vehicle. In this paper we investigate cruise controller design method with consideration for distance to vehicle ahead. We employ linear time varying (LTV) model to describe longitudinal vehicle dynamic motion. With this LTV system we approximately model the nonlinear dynamics of vehicle speed by frequent update of the system parameters. In addition we reformulate the LTV system by transforming distance to leading vehicle into variation of system parameters of the model. Note that in conventional control problem formulation this distance is considered as disturbance which should be rejected. Consequently a controller can be designed by pole placement at each instance of parameter update, based on the linear model with the present system parameters. The validity of this design method is examined by simulation study.

Internal modifications to reduce pollutant emissions from marine engines. A numerical approach

  • Lamas, M.I.;Rodriguez, C.G.;Rodriguez, J.D.;Telmo, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.493-501
    • /
    • 2013
  • Taking into account the increasingly stringent legislation on emissions from marine engines, this work aims to analyze several internal engine modifications to reduce $NO_x$ (nitrogen oxides) and other pollutants. To this end, a numerical model was employed to simulate the operation cycle and characterize the exhaust gas composition. After a preliminary validation process was carried out using experimental data from a four-stroke, medium-speed marine engine, the numerical model was employed to study the influence of several internal modifications, such as water addition from 0 to 100% water to fuel ratios, exhaust gas recirculation from 0 to 100% EGR rates, modification of the overlap timing from 60 to $120^{\circ}$, modification of the intake valve closing from 510 to $570^{\circ}$, and modification of the cooling water temperature from 70 to $90^{\circ}C$. $NO_x$ was reduced by nearly 100%. As expected, it was found that, by lowering the combustion temperature, there is a notable reduction in $NO_x$, but an increase in CO (carbon monoxide), HC (hydrocarbons) and consumption.

Performance test of 100 W linear compressor

  • Ko, J.;Koh, D.Y.;Park, S.J.;Kim, H.B.;Hong, Y.J.;Yeom, H.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

SimMechanics SimHydraulic을 이용한 가상 굴삭기 개발 (Development of a Virtual Excavator using SimMechanics and SimHydraulic)

  • 레광환;정영만;웬치탄;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권1호
    • /
    • pp.29-36
    • /
    • 2013
  • Excavation is an important work in mining, earth removal and general earthworks. Nowadays, automation in excavator has been studied by several researchers. In the excavator research methods, simulation is one of the low cost methods for applied to test safely. In this paper, designed a virtual hydraulic excavator that with the control and the dynamic. At first, the simulation of hydraulic system for excavator's attachment such as boom, arm and bucket using Matlab/Simhydraulic is presented. Second, the dynamic model of excavator is distributed to combine with the hydraulic system. For controlling this system, electric joysticks are used to operate the orifice open areas in Main Control Valve. The simulation result is described to analysis the performance of this virtual excavator.

박동형 인공심폐기에서의 혈류의 고체-유체 상호작용에 대한 수치적 연구 (Numerical study for fluid-structure interaction of blood flow in TPLS)

  • 정기석;성현찬;심은보;고형종;민병구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.705-706
    • /
    • 2002
  • Hemodynamics of the TPLS(Twin Pulse Life Support System) is numerically investigated to delineate the possibility of hemolysis in blood. Computational method employing finite element algorithm is utilized to solve the blood flow of the sac squeezed by moving actuator. We assume that the blood flow interacts with the sac material which is activated by the rigid body motion of the actuator. Valve dynamics at the ends of the sac is simplified as on/off type motion. We compute the transient viscous flow in the two-dimensional geometry of the blood sac. Incompressible laminar flow is simulated on the assumption of Newtonian fluid. Blood velocity has a step gradient near the throat of the sac formed by the moving actuator. According to the decrease of the gap size of blood passage, the magnitude of shear stress in the blood is dramatically increased. Numerical solutions show that the maximum value of shear stress in the blood flow in TPLS is relatively smaller than that of the roller type ECLS.

  • PDF

액체로켓엔진 천이작동 예측을 위한 구성품 동특성 모델링 (Modeling of Liquid Rocket Engine Components Dynamics at Transient Operation)

  • 김형민;이국진;윤웅섭
    • 한국추진공학회지
    • /
    • 제15권1호
    • /
    • pp.35-44
    • /
    • 2011
  • 액체로켓엔진 시스템의 시동 및 정지 또는 추력 제어와 같은 천이 작동 시 동특성을 예측하기 위한 선행 연구로서 추진제 공급 시스템의 구성품에 대한 동특성 모델링을 수행하였다. 연료 공급 계통과 산화제 공급 계통의 구성품들은 재생냉각채널을 제외하고 같은 것으로 가정하였다. 동특성 모델링의 대상 구성품은 펌프, 관로, 오리피스, 제어 밸브, 재생냉각채널, 인젝터 등이며 실제 엔진 시스템의 축소 모형에 대한 수류시험을 통해 각 구성품의 동특성 모델링을 검증하였다. 수치적인 방법을 바탕으로 구성품에 대한 동특성 모델링을 통합하였으며 축소 모형으로 연결된 수류시스템을 사용한 수류시험을 통해 통합 동특성 예측프로그램을 검증하였다.

CMAC 제어기법을 이용한 하이드로 포밍 공정의 압력 제어기 설계 (Design of a CMAC Controller for Hydro-forming Process)

  • 이우호;조형석
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.329-337
    • /
    • 2000
  • This study describes a pressure tracking control of hydroforming process which is used for precision forming of sheet metals. The hydroforming operation is performed in the high-pressure chamber strictly controlled by pressure control valve and by the upward motion of a punch moving at a constant speed, The pressure tracking control is very difficult to design and often does not guarantee satisfactory performances be-cause of the punch motion and the nonlinearities and uncertainties of the hydraulic components. To account for these nonlinearities and uncertainties of the process and iterative learning controller is proposed using Cerebellar Model Arithmetic Computer (CMAC). The experimental results show that the proposed learning control is superior to any fixed gain controller in the sense that it enables the system to do the same work more effectively as the number of operation increases. In addition reardless of the uncertainties and nonlinearities of the form-ing process dynamics it can be effectively applied with little a priori knowledge abuot the process.

  • PDF