International Journal of Internet, Broadcasting and Communication
/
제15권3호
/
pp.166-175
/
2023
Reinforcement learning can be applied to a wide variety of problems. However, the fundamental limitation of reinforcement learning is that it is difficult to derive an answer within a given time because the problems in the real world are too complex. Then, with the development of neural network technology, research on deep reinforcement learning that combines deep learning with reinforcement learning is receiving lots of attention. In this paper, two types of neural networks are combined with reinforcement learning and their characteristics were compared and analyzed with existing value-based reinforcement learning algorithms. Two types of neural networks are FNN and CNN, and existing reinforcement learning algorithms are SARSA and Q-learning.
This paper explores a model-free value-based approach for solving survival gridworld problem. Survival gridworld problem opens up a challenge involving taking risks to gain better rewards. Classic value-based approach in model-free reinforcement learning assumes minimal risk decisions. The proposed method involves a hybrid on-policy and off-policy updates to experience roll-outs using a modified Q-based update equation that introduces a parametric linear rectifier and motivational discount. The significance of this approach is it allows model-free training of agents that take into account risk factors and motivated exploration to gain better path decisions. Experimentations suggest that the proposed method achieved better exploration and path selection resulting to higher episode scores than classic off-policy and on-policy Q-based updates.
The aim of this study is to investigate the pH threshold value for the corrosion of steel reinforcement in concrete. A method was designed to attain the pH value of the pore solution on the location of the steel in concrete. Then the pH values of the pore solution on the location of steel in concrete were changed by exposing the samples to the environment (CO25%, RH 40%) to accelerate carbonation with different periods. Based on this, the pH threshold value for the corrosion of steel reinforcement had been examined by the methods of half-cell potential and electrochemical impedance spectra (EIS). The results have indicated that the pH threshold value for the initial corrosion of steel reinforcement in concrete was 11.21. However, in the carbonated concrete, agreement among whether steel corrosion was initiatory determined by the detection methods mentioned above could be found.
Journal of information and communication convergence engineering
/
제19권1호
/
pp.1-7
/
2021
Reinforcement learning is an area of machine learning that studies how an intelligent agent takes actions in a given environment to maximize the cumulative reward. In this paper, we propose a new MAC protocol based on the Q-learning technique of reinforcement learning to improve the performance of the IEEE 802.11 wireless LAN CSMA/CA MAC protocol. Furthermore, the operation of each access point (AP) and station is proposed. The AP adjusts the value of the contention window (CW), which is the range for determining the backoff number of the station, according to the wireless traffic load. The station improves the performance by selecting an optimal backoff number with the lowest packet collision rate and the highest transmission success rate through Q-learning within the CW value transmitted from the AP. The result of the performance evaluation through computer simulations showed that the proposed scheme has a higher throughput than that of the existing CSMA/CA scheme.
본 논문에서는 인공지능 오델로 게임 에이전트를 구현하기 위해 실제 프로기사들의 기보를 CNN으로 학습시키고 이를 상태의 형세 판단을 위한 근거로 삼아 최소최대탐색을 이용해 현 상태에서 최적의 수를 찾는 의사결정구조를 사용하고 이를 발전시키고자 강화학습 이론을 이용한 자가대국 학습방법을 제안하여 적용하였다. 본 논문에서 제안하는 구현 방법은 기보학습의 성능 평가 차원에서 가치평가를 위한 네트워크로서 기존의 ANN을 사용한 방법과 대국을 통한 방법으로 비교하였으며, 대국 결과 흑일 때 69.7%, 백일 때 72.1%의 승률을 나타내었다. 또한 본 논문에서 제안하는 강화학습 적용 결과 네크워크의 성능을 강화학습을 적용하지 않은 ANN 및 CNN 가치평가 네트워크 기반 에이전트와 비교한 결과 각각 100%, 78% 승률을 나타내어 성능이 개선됨을 확인할 수 있었다.
To study the influence on fracture properties of reinforced concrete wedge splitting test specimens by the addition of reinforcement, and the restriction of steel bars on crack propagation, 7 groups reinforced concrete specimens of different reinforcement position and 1 group plain concrete specimens with the same size factors were designed and constructed for the tests. Based on the double-K fracture criterion and tests, fracture toughness calculation model which was suitable for reinforced concrete wedge splitting tensile specimens has been obtained. The results show that: the value of initial craking load Pini and unstable fracture load Pun decreases gradually with the distance of reinforcement away from specimens's top. Compared with plain concrete specimens, addition of steel bar can reduce the value of initial fracture toughness KIini, but significantly increase the value of the critical effective crack length ac and unstable fracture toughness KIun. For tensional concrete member, the effect of anti-cracking by reinforcement was mainly acted after cracking, the best function of preventing fracture initiation was when the steel bar was placed in the middle of the crack, and when the reinforcement was across the crack and located away from crack tip, it plays the best role in inhibiting the extension of crack.
Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.
Ju, Minkwan;Park, Kyoungsoo;Lee, Kihong;Ahn, Ki Yong;Sim, Jongsung
Structural Engineering and Mechanics
/
제69권4호
/
pp.399-405
/
2019
The present study assessed the reliability-based reinforcement ratio of FRP reinforced concrete structure applying recycled coarse aggregate (RCA) concrete. The statistical characteristics of FRP bars and RCA concrete were investigated from the previous literatures and the mean value and standard deviation were employed for the reliability analysis. The statistics can be regarded as the material uncertainty for configuring the probability distribution model. The target bridge structure is the railway bridge with double T-beam section. The replacement ratios of RCA were 0%, 30%, 50%, and 100%. From the probability distribution analysis, the reliability-based reinforcement ratios of FRP bars were assessed with four cases according to the replacement ratio of RCA. The reinforcement ratio of FRP bars at RCA 100% showed about 17.3% higher than the RCA 0%, where the compressive strength at RCA 100% decreased up to 27.5% than RCA 0%. It was found that the decreased effect of the compressive strength of RCA concrete could be compensated with increase of the reinforcement ratio of FRP bars. This relationship obtained by the reliability analysis can be utilized as a useful information in structural design for FRP bar reinforced concrete structures applying RCA concrete.
The existing underwater vehicle controller design is applied by linearizing the nonlinear dynamics model to a specific motion section. Since the linear controller has unstable control performance in a transient state, various studies have been conducted to overcome this problem. Recently, there have been studies to improve the control performance in the transient state by using reinforcement learning. Reinforcement learning can be largely divided into value-based reinforcement learning and policy-based reinforcement learning. In this paper, we propose the roll controller of underwater vehicle based on Deep Deterministic Policy Gradient(DDPG) that learns the control policy and can show stable control performance in various situations and environments. The performance of the proposed DDPG based roll controller was verified through simulation and compared with the existing PID and DQN with Normalized Advantage Functions based roll controllers.
This study attempts to suggest bending reinforcement method by applying bending reinforcement to composite profile beam in which the concept of prefabrication is introduced. Profile use can be in place of framework and is effective in improvement of shear and bending strength and advantageous in long-term deflection. As a result of experiment, MPB-CB2 with improved module had higher strength and ductility than the previously published MPB-CB and MPB-LB. In case of bending reinforcement with deformed bar and built-up T-shape section based on MPB-CB2, the MPB-RB series reinforced with deformed bar were found to have higher initial stiffness, bending strength and ductility than the MPB-RT series. The less reinforcement effect of the MPB-RT series might be caused by poor concrete filling at the bottom of the built-up T-shape. In comparison between theoretical values and experimental values using minimum yield strength, the ratio between experimental value and theoretical value was shown to be 0.9 or higher except for MPB-RB16 and MPB-RT16 that have more reinforcement compared to the section, thus it is deemed that the reinforced modular composite profiled beam is highly applicable on the basis of minimum yield strength.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.