• Title/Summary/Keyword: Value estimation

Search Result 3,132, Processing Time 0.037 seconds

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

APPROXIMATE ESTIMATION OF RECRUITMENT IN FISH POPULATION UTILIZING STOCK DENSITY AND CATCH (밀도지수와 어획량으로서 수산자원의 가입량을 근사적으로 추정하는 방법)

  • KIM Kee Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.2
    • /
    • pp.47-60
    • /
    • 1975
  • For the calculation of population parameter and estimation of recruitment of a fish population, an application of multiple regression method was used with some statistical inferences. Then, the differences between the calculated values and the true parameters were discussed. In addition, this method criticized by applying it to the statistical data of a population of bigeye tuna, Thunnus obesus of the Indian Ocean. The method was also applied to the available data of a population of Pacific saury, Cololabis saira, to estimate its recuitments. A stock at t year and t+1 year is, $N_{0,\;t+1}=N_{0,\;t}(1-m_t)-C_t+R_{t+1}$ where $N_0$ is the initial number of fish in a given year; C, number o: fish caught; R, number of recruitment; and M, rate of natural mortality. The foregoing equation is $$\phi_{t+1}=\frac{(1-\varrho^{-z}{t+1})Z_t}{(1-\varrho^{-z}t)Z_{t+1}}-\frac{1-\varrho^{-z}t+1}{Z_{t+1}}\phi_t-a'\frac{1-\varrho^{-z}t+1}{Z_{t+1}}C_t+a'\frac{1-\varrho^{-z}t+1}{Z_{t+1}}R_{t+1}......(1)$$ where $\phi$ is CPUE; a', CPUE $(\phi)$ to average stock $(\bar{N})$ in number; Z, total mortality coefficient; and M, natural mortality coefficient. In the equation (1) , the term $(1-\varrho^{-z}t+1)/Z_{t+1}$s almost constant to the variation of effort (X) there fore coefficients $\phi$ and $C_t$, can be calculated, when R is a constant, by applying the method of multiple regression, where $\phi_{t+1}$ is a dependent variable; $\phi_t$ and $C_t$ are independent variables. The values of Mand a' are calculated from the coefficients of $\phi_t$ and $C_t$; and total mortality coefficient (Z), where Z is a'X+M. By substituting M, a', $Z_t$, and $Z_{t+1}$ to the equation (1) recruitment $(R_{t+1})$ can be calculated. In this precess $\phi$ can be substituted by index of stock in number (N'). This operational procedures of the method of multiple regression can be applicable to the data which satisfy the above assumptions, even though the data were collected from any chosen year with similar recruitments, though it were not collected from the consecutive years. Under the condition of varying effort the data with such variation can be treated effectively by this method. The calculated values of M and a' include some deviation from the population parameters. Therefore, the estimated recruitment (R) is a relative value instead of all absolute one. This method of multiple regression is also applicable to the stock density and yield in weight instead of in number. For the data of the bigeye tuna of the Indian Ocean, the values of estimated recruitment (R) calculated from the parameter which is obtained by the present multiple regression method is proportional with an identical fluctuation pattern to the values of those derived from the parameters M and a', which were calculated by Suda (1970) for the same data. Estimated recruitments of Pacific saury of the eastern coast of Korea were calculated by the present multiple regression method. Not only spring recruitment $(1965\~1974)$ but also fall recruitment $(1964\~1973)$ was found to fluctuate in accordance with the fluctuations of stock densities (CPUE) of the same spring and fall, respectively.

  • PDF

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image (Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구)

  • Chae, Sung-Ho;Park, Sung-Hwan;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.931-946
    • /
    • 2017
  • The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.

Estimation of environmental effects and genetic parameters for somatic cell score, stress and immunological traits in Holstein cattle (젖소에 있어서 원유 중 체세포수, 스트레스 및 면역물질에 대한 환경효과와 유전모수 추정)

  • An, Byeong-Seok;Seo, Guk-Hyeon;Gwon, Eung-Gi
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Milk yield and its quality traits determine the dairy enterprise profitability and sustainability. Milk quality traits including somatic cell counts (SCC) is an upcoming economic challenge for dairy farming community in Korea. This study estimated the effect of parity, stage of lactation (early, mid and late lactation) on SCC, stress (blood cortisol) and immunity (blood IgG, lymphocyte and neutrophil) traits, their heritabilities and genetic correlations between them. SCS and blood neutrophil count were significantly affected by both parity and stage of lactation, however; IgG was affected by only stage of lactation, and blood cortisol and lymphocyte were not affected by both factors. The SCS has shown increasing trend with the parity, however; the difference between first and second parity, second and third parity were not significant. The SCS in early (≤90 days) and late lactation (181≤days) were higher than that of mid lactation (91~180 days). Cortisol concentration in blood was lowest in fourth parity, however; the differences among the first three parties were not significant. The IgG was higher in fourth parity compare with first parity however; all other comparisons were noted non-significant. The IgG concentration was significantly higher in early lactation than those of mid and late lactation. The blood lymphocytes were decreased with increasing parity however the differences beyond second parity were not significant. The neutrophils were increased with the increasing lactation stage however; the difference between early and mid lactation was not significant. Although heritability of SCS was still lower, but it was meaningful value (0.09) and may be considered to improve milk quality. The genetic correlations between SCS and cortisol (-0.96), and lymphocyte (-0.76) were highly negative. Heritability of cortisol was low, however genetic correlations between cortisol and lymphocyte (0.79) was highly positive. IgG with medium heritability was correlated negatively with lymphocyte (-0.88) and neutrophil (-0.98). Lymphocyte was lowly heritable and highly correlated with neutrophil concentration (0.87).This study suggested that cortisol, IgG, lymphocyte and neutrophil being positively genetically correlation with somatic cell score could be used as alternative traits to enhance milk quality in Holstein cattle. Further studies are warranted to estimate genetic relationships between immunological and production traits to increase the genetic merit of Holstein cows for milk yield, to improve animal health and economic viability under intensive management system.

Estimation of Family Variation and Genetic Parameter for Growth Traits of Pacific Abalone, Haliotis discus hannai on the 3th Generation of Selection (선발 3세대 북방전복의 성장형질에 대한 가계변이 및 유전모수 추정)

  • Park, Jong-Won;Park, Choul-Ji;Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Hwang, In-Joon;Kim, Sung-Yeon
    • The Korean Journal of Malacology
    • /
    • v.29 no.4
    • /
    • pp.325-334
    • /
    • 2013
  • The purpose of this paper is to compare and analyze family variations for growth-related traits of Pacific abalone, Haliotis discus hannai. Genetic parameters and breeding values were estimated using all measurement data like shell length, shell width, and total weight as 18-month-old growth traits of 5,334 individuals of selected third generation's Pacific abalone produced in 2011. Family variations of 865 individuals of the upper 10 families with the largest number were inspected. Overall mean in phenotypic traits of 18-month-old Pacific abalone which was investigated in this study showed 54.5 mm of shell length, 36.8 mm of shell width and 21.3 g of total weight respectively. And, variation coefficient of total weight was 51.0%, so variability of data was shown to be higher than 21.1% of shell length and 20.7% of shell width. The family effects showed significant difference by each family (p < 0.05), and heritability of shell length, shell width, and total weight was medium with 0.370, 0.382, and 0.367 respectively. So it is considered that family selection is more advantageous than individual selection. On the basis of breeding values of estimated shell length and total weight, to investigate distribution and ranking by each individual about the upper 10 families with the largest number of individuals, the values were used by being changed into standardized breeding values. Based on shell length, it was investigated that the individual number of the upper 5.4% is 152 and the number of the lower 5.4% is 8. In case of total weight, it was inspected that the individual number of the upper 5.4% is 164 and the number of the lower 5.4% is 1. Like these, phenotypic and genetic diverse variations between families could be checked. By estimating genetic parameters and breeding values of a population for production of the next generation, if they are used properly in selection and mating, it is considered that more breeding effects can be expected.

Estimation and Mapping of Methane Emissions from Rice Paddies in Korea: Analysis of Regional Differences and Characteristics (전국 논에서 발생하는 메탄 배출량의 산정 및 지도화: 지역 격차 및 특성 분석)

  • Choi, Sung-Won;Kim, Joon;Kang, Minseok;Lee, Seung Hoon;Kang, Namgoo;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.88-100
    • /
    • 2018
  • Methane emissions from rice paddies are the largest source of greenhouse gases in the agricultural sector, but there are significant regional differences depending on the surrounding conditions and cultivation practices. To visualize these differences and to analyze their causes and characteristics, the methane emissions from each administrative district in South Korea were calculated according to the IPCC guidelines using the data from the 2010 Agriculture, Forestry and Fisheries Census, and then the results were mapped by using the ArcGIS. The nationwide average of methane emissions per unit area was $380{\pm}74kg\;CH_4\;ha^{-1}\;yr^{-1}$. The western region showed a trend toward higher values than the eastern region. One of the major causes resulting in such regional differences was the $SF_o$ (scaling factor associated with the application of organic matter), where the number of cultivation days played an important role to either offset or deepen the differences. Comparison of our results against the actual methane emissions data observed by eddy covariance flux measurement in the three KoFlux rice paddy sites in Gimje, Haenam and Cheorwon showed some differences but encouraging results with a difference of 10 % or less depending on the sites and years. Using the updated GWP (global warming potential) value of 28, the national total methane emission in 2010 was estimated to be $8,742,000tons\;CO_2eq$ - 13% lower than that of the National Greenhouse Gas Inventory Report (i.e., $10,048,000tons\;CO_2eq$). The administrative districts-based map of methane emissions developed in this study can help identify the regional differences, and the analysis of their key controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

Effect of Diet Regimen of Sasang Constitution on Health Status (사상체질별 식이 섭생이 건강에 미치는 영향 -한방건강증진센터 시범운영을 위한 기초연구-)

  • Kim, Kwuy-Bun;Cho, Kyoul-Ja;Lee, Hyang-Yeon;Shin, Hye-Sook;Kim, Kwang-Joo;Moon, Heui-Ja;Kim, Yoon-Hee;Kang, Hyun-Sook;Park, Shin-Ae;Ji, Eun-Sun
    • Journal of East-West Nursing Research
    • /
    • v.7 no.1
    • /
    • pp.18-31
    • /
    • 2002
  • This study, as a basic research to manage a Chinese Medicine Health Promotion Center by way of showing an example, is a before and after experiment research for simple group to verify a difference with cholesterol, health status and perception of health in order to confirm a effectiveness of diet and regimen according to the 4th status of physical constitution. Research object was chosen of 42 persons who operate a physical constitutional dietary regimen among them after selecting professors and clinical nurses (55 persons) majoring in the science of nursing who participated in Chinese Medicine-oriented Nurse Training Course from Aug. of 2001 to Feb. of 2002 all over the country. Diagnostic tools for physical constitution was used of the questionary that is currently consisted of physical constitution grouping test in Eastern & Western Diagnose Center of K Medical Center, and rating of health status was used of the tool that standardized CMI(Cornell Medical Index) to be available for Korean, and perception measurement for health status was used of a visual analogue scale for the health status that each one perceive personally, and physiological status was measured of cholesterol in blood. Analysis for the collected data was carried out by percentage, $X^2$ test, paired t-test according to research object by using SPSS, and the results of this study are as follows. 1) There was no difference with cholesterol before or after the experiment for objects. As a result of estimation about difference with health status by areas before or after the experiment, there are more improved result in eyes, ears, digestive organs, bones and sinews organs, frequency of a disorder, habit, adaptation status, angry, healthy status than before the experiment. As a whole, after the experiment the health was more improved than before the experiment. As the result to inspect a difference of health perception between before and after experiment, after the experiment the health perception level was improved than before, however there was no meaningful differences. 2) As the result to inspect a difference of cholesterol between before and after experiment according to object's physical constitution, in the case of So-yang-in(a person with the minimum male: according to the male and female principles(the sun and the moon)) among the 4th status of physical constitution there was only meaningful difference statistically, however, after the experiment their cholesterol's value was increased. As the result to inspect the difference of health status between before and after the experiment according to physical constitution, all of Ta-um-in(a person with maximum the female), So-yang-in(with the minimum male), So-um-in(with the minimum female) had a meaningful difference before and after the experiment, which means that in all case by physical constitutional groups, after the experiment their health status was more improved than before the experiment. As the result to inspect a difference of health perception between before and after according to physical constitutions, in the case of Tae-um-in and So-um-in, average score after the experiment was risen than before the experiment so that it means that the level of health perception was improved, however, there was no meaning statistically. According to the above results, if continuous diet and regimen by each physical constitutions could be implemented, it is certain that the health could be maintained and promoted. And, what we are healthy is for oneself to feel it subjectively. However, I think that cholesterol score in blood that we can view objectively could be changed distinctly if we can implement a strict diet and regimen. Accordingly, it is necessary for a method and period of experiment to be more strict and longer. According to the above results, I would like to suggest as follows. 1) In order to understand health status by Korean's physical constitutions and to generalize it, these research will be repeated against much more objects that could be selected by proper grouping method to consider a representative. 2) It is necessary for a research to inspect health status by physical constitution by developing a health status measurement tool that has higher confidence and propriety based on physical constitutional theory.

  • PDF

Validation of Sea Surface Wind Speeds from Satellite Altimeters and Relation to Sea State Bias - Focus on Wind Measurements at Ieodo, Marado, Oeyeondo Stations (인공위성 고도계 해상풍 검증과 해상상태편차와의 관련성 - 이어도, 마라도, 외연도 해상풍 관측치를 중심으로 -)

  • Choi, Do-Young;Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.139-153
    • /
    • 2018
  • The sea surface wind field has long been obtained from satellite scatterometers or passive microwave radiometers. However, the importance of satellite altimeter-derived wind speed has seldom been addressed because of the outstanding capability of the scatterometers. Satellite altimeter requires the accurate wind speed data, measured simultaneously with sea surface height observations, to enhance the accuracy of sea surface height through the correction of sea state bias. This study validates the wind speeds from the satellite altimeters (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and analyzes characteristics of errors. In total, 1504 matchup points were produced using the wind speed data of Ieodo Ocean Research Station (IORS) and of Korea Meteorological Administration (KMA) buoys at Marado and Oeyeondo stations for 10 years from December 2007 to May 2016. The altimeter wind speed showed a root mean square error (RMSE) of about $1.59m\;s^{-1}$ and a negative bias of $-0.35m\;s^{-1}$ with respect to the in-situ wind speed. Altimeter wind speeds showed characteristic biases that they were higher (lower) than in-situ wind speeds at low (high) wind speed ranges. Some tendency was found that the difference between the maximum and minimum value gradually increased with distance from the buoy stations. For the improvement of the accuracy of altimeter wind speed, an equation for correction was derived based on the characteristics of errors. In addition, the significance of altimeter wind speed on the estimation of sea surface height was addressed by presenting the effect of the corrected wind speeds on the sea state bias values of Jason-1.