• Title/Summary/Keyword: Value engineering methodology

Search Result 530, Processing Time 0.025 seconds

Analysis of the Correlation between Geological Characteristics and Water Withdrawals in the Laterals of Radial Collector Well (방사형집수정의 수평집수관에서 지질특성과 취수량의 상관관계 분석)

  • Kim, Tae-Hyung;Jeong, Jae-Hoon;Kim, Min;OH, Se-Hyoung;Lee, Jae-Sung
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.201-215
    • /
    • 2014
  • This study was performed to investigate the correlation between hydraulic conductivity and the flow rate of an aquifer, with the flow rate calculated from the laterals of the radial collector well using data obtained by the development project of riverbank filtration (Second Phase) in Changwon City. The hydraulic conductivity was empirically calculated from unconsolidated sediments collected from a sandy gravel layer along the middle-to-downstream sections of the Nakdong River. The Beyer equation produced the most suitable hydraulic conductivity from the various empirical formulas employed. The calculated hydraulic conductivity ranged from 0.083 to 0.264 cm/s, with an average value of 0.159 cm/s, suggesting that the aquifer in the study area possesses a high permeability with a good distribution of sandy gravel. The relationship between the calculated hydraulic conductivity in the aquifer and the entrance velocity into the screen, the flow rate was analyzed through the linear regression analysis. From the result of regression analysis, it showed that the hydraulic conductivity and the entrance velocity into the screen and the flow rate have a linear regression equation having about 72% of the high correlation. The result of verification in the measured data between each variable showed a high suitability from being consistent with the approximately 72% in the linear regression analysis. This study demonstrates that the groundwater flow rate can be estimated within the laterals of the radial collector well using a linear regression equation, if the hydraulic conductivity of the aquifer is known. This methodology could thus be applicable to other aquifers with hydraulic conductivity and permeability parameters similar to those in the present study area.

A Study on the Determination of Reference Parameter for Aircraft Impact Induced Risk Assessment of Nuclear Power Plant (원전의 항공기 충돌 리스크 평가를 위한 대표매개변수 선정 연구)

  • Shin, Sang Shup;Hahm, Daegi;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.437-450
    • /
    • 2014
  • In this study, we developed a methodology to determine the reference parameter for an aircraft impact induced risk assessment of nuclear power plant (NPP) using finite element impact analysis of containment building. The target structure used to develop the method of reference parameter selection is one of the typical Korean PWR type containment buildings. We composed a three-dimensional finite element model of the containment building. The concrete damaged plasticity model was used for the concrete material model. The steels in the tendon, rebar, and liner were modeled using the piecewise-linear stress-strain curves. To evaluate the correlations between structural response and each candidate parameter, we developed Riera's aircraft impact force-time history function with respect to the variation of the loading parameters, i.e., impact velocity and mass of the remaining fuel. For each force-time history, the type of aircraft is assumed to be a Boeing 767 model. The variation ranges of the impact velocity and remaining fuel percentage are 50 to 200m/s, and 30 to 90%, respectively. Four parameters, i.e., kinetic energy, total impulse, maximum impulse, and maximum force are proposed for candidates of the reference parameter. The wellness of the correlation between the reference parameter and structural responses was formulated using the coefficient of determination ($R^2$). From the results, we found that the maximum force showed the highest $R^2$ value in most responses in the materials. The simplicity and intuitiveness of the maximum force parameter are also remarkable compared to the other candidate parameters. Therefore, it can be concluded that the maximum force is the most proper candidate for the reference parameter to assess the aircraft impact induced risk of NPPs.

Calibration of a Network Link Travel Cost Function with the Harmony Search Algorithm (화음탐색법을 이용한 교통망 링크 통행비용함수 정산기법 개발)

  • Kim, Hyun Myung;Hwang, Yong Hwan;Yang, In Chul
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.71-82
    • /
    • 2012
  • Some previous studies adopted a method statistically based on the observed traffic volumes and travel times to estimate the parameters. Others tried to find an optimal set of parameters to minimize the gap between the observed and estimated traffic volumes using, for instance, a combined optimization model with a traffic assignment model. The latter is frequently used in a large-scale network that has a capability to find a set of optimal parameter values, but its appropriateness has never been demonstrated. Thus, we developed a methodology to estimate a set of parameter values of BPR(Bureau of Public Road) function using Harmony Search (HS) method. HS was developed in early 2000, and is a global search method proven to be superior to other global search methods (e.g. Genetic Algorithm or Tabu search). However, it has rarely been adopted in transportation research arena yet. The HS based transportation network calibration algorithm developed in this study is tested using a grid network, and its outcomes are compared to those from incremental method (Incre) and Golden Section (GS) method. It is found that the HS algorithm outperforms Incre and GS for copying the given observed link traffic counts, and it is also pointed out that the popular optimal network calibration techniques based on an objective function of traffic volume replication are lacking the capability to find appropriate free flow travel speed and ${\alpha}$ value.

Flood stage analysis considering the uncertainty of roughness coefficients and discharge for Cheongmicheon watershed (조도계수와 유량의 불확실성을 고려한 청미천 유역의 홍수위 해석)

  • Shin, Sat-Byeol;Park, Jihoon;Song, Jung-Hun;Kang, Moon Seong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.661-671
    • /
    • 2017
  • The objective of this study was to analyze the flood stage considering the uncertainty caused by the river roughness coefficients and discharge. The methodology of this study involved the GLUE (Generalized Likelihood Uncertainty Estimation) to quantify the uncertainty bounds applying three different storm events. The uncertainty range of the roughness was 0.025~0.040. In case of discharge, the uncertainty stemmed from parameters in stage-discharge rating curve, if h represents stage for discharge Q, which can be written as $Q=A(h-B)^C$. Parameters in rating curve (A, B and C) were estimated by non-linear regression model and assumed by t distribution. The range of parameters in rating curve was 5.138~18.442 for A, -0.524~0.104 for B and 2.427~2.924 for C. By sampling 10,000 parameter sets, Monte Carlo simulations were performed. The simulated stage value was represented by 95% confidence interval. In storm event 1~3, the average bound was 0.39 m, 0.83 m and 0.96 m, respectively. The peak bound was 0.52 m, 1.36 m and 1.75 m, respectively. The recurrence year of each storm event applying the frequency analysis was 1-year, 10-year and 25-year, respectively.

Design of Environmentally Sound Manufacturing Process of Fork Lift using LCA and DfE Methodology (LCA와 DfE기법을 이용한 친환경적인 지게차 제조공정의 설계)

  • Park, Kwang-Ho;Hwang, Yong-Woo;Park, Il-Do
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.677-685
    • /
    • 2005
  • Life Cycle Assessment(LCA) and Design for Environment(DfE) method were applied to design the environmentally sound manufacturing process of f31k lift in this study. Not only external movement of LCA and DfE method in the legal and systemic phase, but also active researches of those in the development phase of case study and application to the industrial field, have been going on. In concretely, the manufacturing processes of the folk lift generating the most environmental impact were examined by applying LCA method, and the environmentally sound manufacturing process was designed by applying, DfE method to the processes. As the results of LCA, environmental impacts for the eco-toxicity and human toxicity of seven major environmental categories were in high value, and so be in the cutting & welding process and painting process among the manufacturing processes. High solid paints, increasing the solid content of the existing solvent paints used in painting process, were developed to reduce the environmental impacts generated in the painting process. By utilizing the high solid paints, about 20% of environmental impacts (as environmental index of LCA) could be reduced.

Analysis of the Korean Real Estate Market and Boosting Policies Focusing on Mortgage Loans: Using System Dynamics (주택담보대출 규제 완화에 따른 부동산시장 영향 분석: 시스템다이내믹스 모형 개발)

  • Hwang, Sung-Joo;Park, Moon-Seo;Lee, Hyun-Soo;Yoon, You-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.1
    • /
    • pp.101-112
    • /
    • 2010
  • The Korean real estate market currently is experiencing a slowdown due to the global economic crisis which has resulted from subprime mortgage lending practices. In response, the Korean government has enforced various policies, based on intend to deregulate real estate speculation, such as increasing the Loan to value ratio (LTV) in order to stimulate housing supply, demand and accompanying housing transactions. However, these policies have appeared to result in deep confusion in the Korean housing market. Furthermore, analyses for housing market forecasting particularly those which examine the impact of the international financial crisis on the Korean real estate market have been partial and fragmentary. Therefore, a comprehensive and systematical approach is required to analyze the real estate financial market and the causal nexus between market determining factors. Thus, with an integrated perspective and applying a system dynamics methodology, this paper proposes Korean Real Estate and Mortgage Market dynamics models based on the fundamental principles of housing markets, which are determined by supply and demand. As well, the potential effects of the Korean government's deregulation policies are considered by focusing on the main factor of these policies: the mortgage loan.

Improving the Efficiency of DMAIC Application Process through the Case Studies of Practical Six Sigma Construction Projects (6시그마 건설실무 적용사례 분석을 통한 DMAIC 적용 프로세스의 효율성 제고)

  • Kwon, O-Bin;Lee, Seung-Hyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.1
    • /
    • pp.88-100
    • /
    • 2010
  • As the competition between companies are deepened, the number of companies adopting six sigma principles, which is one of the innovative management strategies, are increasing. According to this trend, the changes in both strategies and methodologies of six sigma are continuous. However, the evaluations and the management principles included in the process after the six sigma applications are insufficient, and the cooperation between the parties in the company is also not enough because the application process of six sigma is too complex and not efficient. In order to solve this problem, a research for developing the methodology which can learn about and do six sigma applications is so necessary, specifically for expanding the six sigma applications and introducing the participation of all company members. The purpose of this study, therefore, was to develop and present more efficient Six Sigma applied process by reducing the existing unnecessary steps in improvement one, by applying the examination method of wasteful elements on the potential factors, through analyzing the Six Sigma DMAIC applied case in the construction industry. The result of those application showed that the detection of potential factors using wasting elements was possible in measurement step and that it was possible for the improved process with reduced steps compared to existing process while to remain the outcomes. It is considered that the performance rate of Six Sigma project will be improved significantly because the reduction in the improvement step does not affect the improvement effect within the whole Six Sigma project.

Extraction of Surface-Active Substances from Defatted Rice Bran by Supercritical Carbon Dioxide (초임계 CO2유체 추출법을 이용한 탈지미강 중 표면활성물질 추출의 최적화)

  • Lee, Hyong-Ju;Lee, Eui-Suk;Hong, Soon-Taek
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • By using supercritical carbon dioxide fluid, an attempt was made to extract surface-active substances from defatted rice bran. Extraction was carried out according to D-optimal design and results were analyzed by response surface methodology to establish optimum condition. It was found that pressure, temperature and co-solvent (ethanol) influenced in a different extent on the extraction efficiency (i.e., yield and interfacial tension) of surface-active substances. Among them, co-solvent was found to be a major influencing factor, where maximum yield (2.62%) was observed at the highest content (250 g). In addition, it also affected most on the interfacial tension at the oil-water interface but in this case the lowest interfacial tension value (9.51 mN/m) was found when added lowest (50 g). In conclusion, it was estimated that the optimum extraction condition was to be pressure 350bar, temperature $62^{\circ}C$ and co-solvent content 50 g in this study, where extraction yield was 0.69% and interfacial tension to be 10.1 mN/m.

Sensitivity analysis of flood vulnerability index of levee according to climate change (기후변화에 따른 제방의 홍수취약성지수 민감도 분석)

  • Lee, Hoo Sang;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1161-1169
    • /
    • 2018
  • In this study, a new methodology was proposed to evaluate the flood vulnerability of river levee and to investigate the effect on the levee where the water level changes according to climate change. The stability of levee against seepage was evaluated using SEEP/W model which is two-dimensional groundwater infiltration model. In addition to the infiltration behavior, it is necessary to analyze the vulnerability of the embankment considering the environmental conditions of the river due to climate change. In this study, the levee flood vulnerability index (LFVI) was newly developed by deriving the factors necessary for the analysis of the levee vulnerability. The size of river levee was investigated by selecting the target area. The selected levees were classified into upstream part, midstream part and downstream part at the nearside of Seoul in the Han river, and the safety factor of the levee was analyzed by applying the design flood level of the levee. The safety ratio of the levee was analyzed by applying the design flood level considering the current flood level and the scenario of climate change RCP8.5. The degree of change resulting from climate change was identified for each factor that forms the levee flood vulnerability index. By using the levee flood vulnerability index value utilizing these factors comprehensively, it was finally possible to estimate the vulnerability of levee due to climate change.

Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber (CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발)

  • Byun, Jongyun;Jun, Changhyun;Kim, Hyeon-Joon;Lee, Jae Joon;Park, Hunil;Lee, Jinwook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this research, a methodology was developed for constructing an appropriate rainfall image database for estimating rainfall intensity based on CCTV video. The database was constructed in the Large-Scale Climate Environment Chamber of the Korea Conformity Laboratories, which can control variables with high irregularity and variability in real environments. 1,728 scenarios were designed under five different experimental conditions. 36 scenarios and a total of 97,200 frames were selected. Rain streaks were extracted using the k-nearest neighbor algorithm by calculating the difference between each image and the background. To prevent overfitting, data with pixel values greater than set threshold, compared to the average pixel value for each image, were selected. The area with maximum pixel variability was determined by shifting with every 10 pixels and set as a representative area (180×180) for the original image. After re-transforming to 120×120 size as an input data for convolutional neural networks model, image augmentation was progressed under unified shooting conditions. 92% of the data showed within the 10% absolute range of PBIAS. It is clear that the final results in this study have the potential to enhance the accuracy and efficacy of existing real-world CCTV systems with transfer learning.