• 제목/요약/키워드: Validation tests

검색결과 585건 처리시간 0.03초

Experimental validation of smartphones for measuring human-induced loads

  • Chen, Jun;Tan, Huan;Pan, Ziye
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.625-642
    • /
    • 2016
  • The rapid technology developments in smartphones have created a significant opportunity for their use in structural live load measurements. This paper presents extensive experiments conducted in two stages to investigate this opportunity. Shaking table tests were carried out in the first stage using selected popular smartphones to measure the sinusoidal waves of various frequencies, the sinusoidal sweeping, and earthquake waves. Comparison between smartphone measurements and real inputs showed that the smartphones used in this study gave reliable measurements for harmonic waves in both time and frequency domains. For complex waves, smartphone measurements should be used with caution. In the second stage, three-dimensional motion capture technology was employed to explore the capacity of smartphones for measuring the movement of individuals in walking, bouncing and jumping activities. In these tests, reflective markers were attached to the test subject. The markers' trajectories were recorded by the motion capture system and were taken as references. The smartphone measurements agreed well with the references when the phone was properly fixed. Encouraged by these experimental validation results, smartphones were attached to moving participants of this study. The phones measured the acceleration near the center-of-mass of his or her body. The human-induced loads were then reconstructed by the acceleration measurements in conjunction with a biomechanical model. Satisfactory agreement between the reconstructed forces and that measured by a force plate was observed in several instances, clearly demonstrating the capability of smartphones to accurately assist in obtaining human-induced load measurements.

Modelling of multidimensional effects in thermal-hydraulic system codes under asymmetric flow conditions - Simulation of ROCOM tests 1.1 and 2.1 with ATHLET 3D-Module

  • Pescador, E. Diaz;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3182-3195
    • /
    • 2021
  • The implementation and validation of multi-dimensional (multi-D) features in thermal-hydraulic system codes aims to extend the application of these codes towards multi-scale simulations. The main goal is the simulation of large-scale three-dimensional effects inside large volumes such as piping or vessel. This novel approach becomes especially relevant during the simulation of accidents with strongly asymmetric flow conditions entailing density gradients. Under such conditions, coolant mixing is a key phenomenon on the eventual variation of the coolant temperature and/or boron concentration at the core inlet and on the extent of a local re-criticality based on the reactivity feedback effects. This approach presents several advantages compared to CFD calculations, mainly concerning the model size and computational efforts. However, the range of applicability and accuracy of the newly implemented physical models at this point is still limited and needs to be further extended. This paper aims at contributing to the validation of the multi-D features of the system code ATHLET based on the simulation of the Tests 1.1 and 2.1, conducted at the test facility ROCOM. Overall, the multi-D features of ATHLET predict reasonably well the evolution from both experiments, despite an observed overprediction of coolant mixing at the vessel during both experiments.

제어 검증용 발전소 시뮬레이터 개발 (Development of Power Plant Simulator for Control System Verification & Validation)

  • 변승현;황도현
    • 한국시뮬레이션학회논문지
    • /
    • 제19권1호
    • /
    • pp.41-51
    • /
    • 2010
  • 500MW급 초임계압 표준 석탄 화력 발전소에의 실증 적용을 목표로 국산 분산제어시스템의 개발 연구가 진행되고 있다. 시뮬레이터는 원자력발전소의 디지털 제어시스템 업그레이드나 아날로그 제어 시스템의 디지털 제어시스템으로의 개체시 제어 시스템의 검증용으로 활용되고 있으며, 국내에서도 중용량 석탄 화력 보일러 제어 시스템 검증에 활용된 바 있다. 본 논문에서 는 500MW급 표준 석탄 화력 발전소에의 적용을 목적으로 개발 중인 제어 시스템을 검증하기 위해 제어 검증용 시뮬레이터를 개발하였다. 제어 검증을 위한 제어 모델을 개발하는데 있어서 현장 제어 시스템 데이터와 시뮬레이션 개발 환경에서 현장 데이터를 활용가능하게 하는 변환 프로그램, 제어 시스템 제작사 매뉴얼에 기반하여 제어 모델을 개발하였다. 개발한 시뮬레이터는 열평형상태시험, 부하변동 시험, 고장모사시험 등을 통하여 효용성을 확인하였으며, 개발 중인 제어 시스템을 검증하고, 기존 제어 시스템의 분석 및 개선에 유용하게 활용할 수 있을 것으로 기대한다.

Development of Land fog Detection Algorithm based on the Optical and Textural Properties of Fog using COMS Data

  • Suh, Myoung-Seok;Lee, Seung-Ju;Kim, So-Hyeong;Han, Ji-Hye;Seo, Eun-Kyoung
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.359-375
    • /
    • 2017
  • We developed fog detection algorithm (KNU_FDA) based on the optical and textural properties of fog using satellite (COMS) and ground observation data. The optical properties are dual channel difference (DCD: BT3.7 - BT11) and albedo, and the textural properties are normalized local standard deviation of IR1 and visible channels. Temperature difference between air temperature and BT11 is applied to discriminate the fog from other clouds. Fog detection is performed according to the solar zenith angle of pixel because of the different availability of satellite data: day, night and dawn/dusk. Post-processing is also performed to increase the probability of detection (POD), in particular, at the edge of main fog area. The fog probability is calculated by the weighted sum of threshold tests. The initial threshold and weighting values are optimized using sensitivity tests for the varying threshold values using receiver operating characteristic analysis. The validation results with ground visibility data for the validation cases showed that the performance of KNU_FDA show relatively consistent detection skills but it clearly depends on the fog types and time of day. The average POD and FAR (False Alarm Ratio) for the training and validation cases are ranged from 0.76 to 0.90 and from 0.41 to 0.63, respectively. In general, the performance is relatively good for the fog without high cloud and strong fog but that is significantly decreased for the weak fog. In order to improve the detection skills and stability, optimization of threshold and weighting values are needed through the various training cases.

Key Principles of Clinical Validation, Device Approval, and Insurance Coverage Decisions of Artificial Intelligence

  • Seong Ho Park;Jaesoon Choi;Jeong-Sik Byeon
    • Korean Journal of Radiology
    • /
    • 제22권3호
    • /
    • pp.442-453
    • /
    • 2021
  • Artificial intelligence (AI) will likely affect various fields of medicine. This article aims to explain the fundamental principles of clinical validation, device approval, and insurance coverage decisions of AI algorithms for medical diagnosis and prediction. Discrimination accuracy of AI algorithms is often evaluated with the Dice similarity coefficient, sensitivity, specificity, and traditional or free-response receiver operating characteristic curves. Calibration accuracy should also be assessed, especially for algorithms that provide probabilities to users. As current AI algorithms have limited generalizability to real-world practice, clinical validation of AI should put it to proper external testing and assisting roles. External testing could adopt diagnostic case-control or diagnostic cohort designs. A diagnostic case-control study evaluates the technical validity/accuracy of AI while the latter tests the clinical validity/accuracy of AI in samples representing target patients in real-world clinical scenarios. Ultimate clinical validation of AI requires evaluations of its impact on patient outcomes, referred to as clinical utility, and for which randomized clinical trials are ideal. Device approval of AI is typically granted with proof of technical validity/accuracy and thus does not intend to directly indicate if AI is beneficial for patient care or if it improves patient outcomes. Neither can it categorically address the issue of limited generalizability of AI. After achieving device approval, it is up to medical professionals to determine if the approved AI algorithms are beneficial for real-world patient care. Insurance coverage decisions generally require a demonstration of clinical utility that the use of AI has improved patient outcomes.

Nonlinear analysis and tests of steel-fiber concrete beams in torsion

  • Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • 제9권4호
    • /
    • pp.323-338
    • /
    • 2000
  • An analytical approach for the prediction of the behaviour of steel-fiber reinforced concrete beams subjected to torsion is described. The analysis method employs a special stress-strain model with a non-linear post cracking branch for the material behaviour in tension. Predictions of this model for the behaviour of steel-fiber concrete in direct tension are also presented and compared with results from tests conducted for this reason. Further in this work, the validation of the proposed torsional analysis by providing comparisons between experimental curves and analytical predictions, is attempted. For this purpose a series of 10 steel-fiber concrete beams with various cross-sections and steel-fiber volume fractions tested in pure torsion, are reported here. Furthermore, experimental information compiled from works around the world are also used in an attempt to establish the validity of the described approach based on test results of a broad range of studies. From these comparisons it is demonstrated that the proposed analysis describes well the behaviour of steel-fiber concrete in pure torsion even in the case of elements with non-rectangular cross-sections.

Development of 6-DOF Equations of Motion for a Planning Boat Based on the Results of Sea Trial Tests

  • Jeon, Myung-Jun;Lee, Dong-Hyun;Yoon, Hyeon-Kyu
    • 한국항해항만학회지
    • /
    • 제40권5호
    • /
    • pp.231-239
    • /
    • 2016
  • In general, the attitude of a high-speed planning boat changes following a speed change. Since the hydrodynamic forces acting on a ship differ according to the change of its underwater shape, it is difficult to estimate its hydrodynamic force compared to that of a large commercial ship. In this paper, 6 Degrees Of Freedom (DOF) equations of motion that express the maneuvering motion of a planning boat are modeled by analyzing its motion characteristics based on various sea trial tests. Finally, a maneuvering simulation is carried out and a validation of the equations of motion is confirmed with the results of sea trial tests.

설계용 S/W를 활용한 소형비행기의 비행특성 매개변수 추출과 주관적 시험평가방식에 관한 연구 (Derivation and Validation of Aerodynamic Parameters of Small Airplanes Using Design Software and Subjective Tests)

  • 이숙경;공지영;최유환;윤석준
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2004년도 춘계학술대회 논문집
    • /
    • pp.142-147
    • /
    • 2004
  • It is very difficult to acquire high-fidelity flight test data for small airplanes such as typical unmanned aerial vehicles because MEMS-type small sensors used in the tests do not present reliable data in general. Besides, it is not practical to conduct expensive flight tests for low-cost small airplanes in order to simulate their flight characteristics. A practical approach to obtain acceptable flight data, including stability and control derivatives and data of weight and balance, is proposed in this study. Aircraft design software such as Darcorp's AAA is used to generate aerodynamic data for small airplanes, and moments of inertia are calculated using CATIA, structural design software. These flight data from simulation software are evaluated subjectively and tailored using simulation flight by experienced pilots, based on the certified procedures in FAA AC 120-45A and 40B, which are used for manned airplane simulators.

  • PDF

Flexural and shear behaviour of profiled double skin composite elements

  • Anwar Hossain, K.M.;Wright, H.D.
    • Steel and Composite Structures
    • /
    • 제4권2호
    • /
    • pp.113-132
    • /
    • 2004
  • Double skin composite element (DSCE) is a novel form of construction comprising two skins of profiled steel sheeting with an infill of concrete. DSCEs are thought to be applicable as shear or core walls in a building where they can resist in-plane loads. In this paper, the behaviour of DSCE subjected to combined bending and shear deformation is described. Small-scale model tests on DSCEs manufactured from micro-concrete and very thin sheeting were conducted to investigate the flexural and shear behaviour along with analytical analysis. The model tests provided information on the strength, stiffness, strain conditions and failure modes of DSCEs. Detailed development of analytical models for strength and stiffness and their performance validation by model tests are presented.

신용평가모형에서 두 분포함수의 동일성 검정을 위한 비모수적인 검정방법 (Nonparametric homogeneity tests of two distributions for credit rating model validation)

  • 홍종선;김지훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.261-272
    • /
    • 2009
  • 신용평가모형에서 두 집단의 판별력 검정방법 중의 하나로 두 분포함수의 동일성 검정을 위한 비모수적인 Kolmogorov-Smirnov (K-S) 검정방법이 대표적으로 적용되고 있다. 본 연구에서는 신용평가모형에서 두 분포함수의 동일성 검정을 위하여 K-S 검정 방법 외에 Cramer-Von Mises, Anderson-Darling, Watson 검정방법들을 소개하고 Joseph (2005)의 기준에 대응하는 판단기준을 제안한다. 또한 신용평가 자료와 유사한 상황 하에서의 모의실험을 통해서 불량률, 표본크기 그리고 제II종 오류율을 고려한 대안적인 판단기준을 제시하고 그 적용방법에 대해서 살펴본다.

  • PDF