• Title/Summary/Keyword: Validation technique

Search Result 634, Processing Time 0.027 seconds

Optimal Estimation of the Peak Wave Period using Smoothing Method (평활화 기법을 이용한 파랑 첨두주기 최적 추정)

  • Uk-Jae, Lee;Byeong Wook, Lee;Dong-Hui, Ko;Hong-Yeon, Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.266-274
    • /
    • 2022
  • In this study, a smoothing method was applied to improve the accuracy of peak wave period estimation using the water surface elevation observed from the Oceanographic and Meteorological Observation Tower located on the west coast of the Korean Peninsula. Validation of the application of the smoothing method was per- formed using variance of the surface elevation and total amount wave energy, and then the effect on the application of smoothing was analyzed. As a result of the analysis, the correlation coefficient between variance of the surface elevation and total amount wave energy was 0.9994, confirming that there was no problem in applying the method. Thereafter, as a result of reviewing the effect of smoothing, it was found to be reduced by about 4 times compared to the confidence interval of the existing estimated spectrum, confirming that the accuracy of the estimated peak wave period was improved. It was found that there was a statistically significant difference in proba- bility density between 4 and 6 seconds due to the smoothing application. In addition, for optimal smoothing, the appropriate number of smoothings according to the significant wave height range was calculated using a statistical technique, and the number of smoothings was found to increase due to the unstable spectral shape as the significant wave height decreased.

Study on Radionuclide Migration Modelling for a Single Fracture in Geologic Medium : Characteristics of Hydrodynamic Dispersion Diffusion Model and Channeling Dispersion Diffusion Model (단일균열 핵종이동모델에 관한 연구 -수리분산확산모델과 국부통로확산모델의 특성-)

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.401-410
    • /
    • 1994
  • Validation study of two radionuclide migration models for single fracture developed in geologic medium the hydrodynamic dispersion diffusion model(HDDM) and the channeling dispersion diffusion model(CDDM), was studied by migration experiment of tracers through an artificial granite fracture on the labolatory scale. The tracers used were Uranine and Sodium lignosulfonate know as nonsorbing material. The flow rate ranged 0.4 to 1.5 cc/min. Related parameters for the models were estimated by optimization technique. Theoretical breakthrough curves with experimental data were compared. In the experiment, it was deduced that the surface sorption for both tracers did not play an important role while the diffusion of Uranine into the rock matrix turned out to be an important mass transfer mechanism. The parameter characterizing the rock matrix diffusion of each model agreed well The simulated result showed that the amount of flow rate could not tell the CDDM from the HDDM quantitatively. On the other hand, the variation of fracture length gave influence on the two models in a different degree. The dispersivity of breakthrough curve of the CDDM was more amplified than that of the CDDM when the fracture length was increased. A good agreement between the models and experimental data gave a confirmation that both models were very useful in predicting the migration system through a single fracture.

  • PDF

Contrast Media Side Effects Prediction Study using Artificial Intelligence Technique (인공지능 기법을 이용한 조영제 부작용 예측 연구)

  • Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.423-431
    • /
    • 2023
  • The purpose of this study is to analyze the factors affecting the classification of the severity of contrast media side effects based on the patient's body information using artificial intelligence techniques to be used as basic data to reduce the degree of contrast medium side effects. The data used in this study were 606 examiners who had no contrast medium side effects in the past history survey among 1,235 cases of contrast medium side effects among 58,000 CT scans performed at a general hospital in Seoul. The total data is 606, of which 70% was used as a training set and the remaining 30% was used as a test set for validation. Age, BMI(Body Mass Index), GFR(Glomerular Filtration Rate), BUN(Blood Urea Nitrogen), GGT(Gamma Glutamyl Transgerase), AST(Aspartate Amino Transferase,), and ALT(Alanine Amiono Transferase) features were used as independent variables, and contrast media severity was used as a target variable. AUC(Area under curve), CA(Classification Accuracy), F1, Precision, and Recall were identified through AdaBoost, Tree, Neural network, SVM, and Random foest algorithm. AdaBoost and Random Forest show the highest evaluation index in the classification prediction algorithm. The largest factors in the predictions of all models were GFR, BMI, and GGT. It was found that the difference in the amount of contrast media injected according to renal filtration function and obesity, and the presence or absence of metabolic syndrome affected the severity of contrast medium side effects.

A Delphi Study to Validate the Patient-Centered Doctor's Competency Framework in Korea (한국의 환자 중심 의사 역량 프레임 타당화를 위한 델파이 연구 )

  • Sunju Im;Young-Jon Kim;Chanwoong Kim;Geon-Ho Lee;Sun-Woo Lee;Woo-Taek Jeon;Hanna Jung;Sojung Yune
    • Korean Medical Education Review
    • /
    • v.25 no.2
    • /
    • pp.139-158
    • /
    • 2023
  • Defining a competent doctor is important for educating and training doctors. However, competency frameworks have rarely been validated during the process of their development in Korea. The purpose of this study was to validate the patient-centered doctor's competency framework, which had been developed by our expert working group (EWG). Two rounds of Delphi questionnaire surveys were conducted among a panel of experts on medicine and medical education. The panel members were provided with six core competencies, 17 sub-competencies, and 53 enabling competencies, and were asked to rate the importance of these competencies on a 5-point Likert scale. Between April and July 2021, a total of 28 experts completed both rounds. The data of the Delphi study were analyzed for the mean, standard deviation, median, inter-rater agreement (IRA), and content validity ratio (CVR). A CVR >0.36 and IRA ≥0.75 were deemed to indicate validity and agreement. This study found that five enabling competencies were not valid, and agreement was not reached for three sub-competencies and two enabling competencies. In consideration of CVR and the individual opinions of panel members at each session, the final competencies were extracted through consensus meetings of the EWG. The competencies were modified into six core competencies, 16 sub-competencies, and 47 enabling competencies. This study is meaningful in that it proposes patient-centered doctor's competencies enabling the development of residents' milestone competencies, an assessment system, and educational programs.

Enhancement of Geomorphology Generation for the Front Land of Levee Using Aerial Photograph (항공영상을 연계한 하천 제외지의 지형분석 개선 기법)

  • Lee, Geun Sang;Lee, Hyun Seok;Hwang, Eui Ho;Koh, Deuk Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.407-415
    • /
    • 2008
  • This study presents the methodology to link with aerial photos for advancing the accuracy of topographic survey data that is used to calculate water volume in urban stream. First, GIS spatial interpolation technique as Inverse Distance Weight (IDW) and Kriging was applied to construct the terrain morphology to the sand-bar and grass area using cross-sectional survey data, and also validation point data was used to estimate the accuracy of created topographic data. As the result of comparison, IDW ($d^{-2}_{ij}$, 2nd square number) in Sand-bar area and Kriging Spherical model in grass area showed more efficient results in the construction of topographic data of river boundary. But the differences among interpolation methods are very slight. Image classification method, Minimum Distance Method (MDM) was applied to extract sand-bar and grass area that are located to river boundary efficiently and the elevation value of extracted layers was allocated to the water level point value. Water volume with topographic data from aerial photos shows the advanced accuracy of 13% (in sand-bar) and 12% (in grass) compared to the water volume of original terrain data. Therefore, terrain analysis method in river linking with aerial photos is efficient to the monitoring about sand-bar and grass area that are located in the downstream of Dam in flooding season, and also it can be applied to calculate water volume efficiently.

A Groundwater Potential Map for the Nakdonggang River Basin (낙동강권역의 지하수 산출 유망도 평가)

  • Soonyoung Yu;Jaehoon Jung;Jize Piao;Hee Sun Moon;Heejun Suk;Yongcheol Kim;Dong-Chan Koh;Kyung-Seok Ko;Hyoung-Chan Kim;Sang-Ho Moon;Jehyun Shin;Byoung Ohan Shim;Hanna Choi;Kyoochul Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.71-89
    • /
    • 2023
  • A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.

Performance Prediction for Plenoptic Microscopy Under Numerical Aperture Unmatching Conditions (수치 구경 불일치 플렌옵틱 현미경 성능 예측 방안 연구)

  • Ha Neul Yeon;Chan Lee;Seok Gi Han;Jun Ho Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • A plenoptic optical system for microscopy comprises an objective lens, tube lens, microlens array (MLA), and an image sensor. Numerical aperture (NA) matching between the tube lens and MLA is used for optimal performance. This paper extends performance predictions from NA matching to unmatching cases and introduces a computational technique for plenoptic configurations using optical analysis software. Validation by fabricating and experimenting with two sample systems at 10× and 20× magnifications resulted in predicted spatial resolutions of 12.5 ㎛ and 6.2 ㎛ and depth of field (DOF) values of 530 ㎛ and 88 ㎛, respectively. The simulation showed resolutions of 11.5 ㎛ and 5.8 ㎛, with DOF values of 510 ㎛ and 70 ㎛, while experiments confirmed predictions with resolutions of 11.1 ㎛ and 5.8 ㎛ and DOF values of 470 ㎛ and 70 ㎛. Both formula-based prediction and simulations yielded similar results to experiments that were suitable for system design. However, regarding DOF values, simulations were closer to experimental values in accuracy, recommending reliance on simulation-based predictions before fabrication.

Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging for Language Mapping in Brain Tumor Surgery: Validation With Direct Cortical Stimulation and Cortico-Cortical Evoked Potential

  • Koung Mi Kang;Kyung Min Kim;In Seong Kim;Joo Hyun Kim;Ho Kang;So Young Ji;Yun-Sik Dho;Hyongmin Oh;Hee-Pyoung Park;Han Gil Seo;Sung-Min Kim;Seung Hong Choi;Chul-Kee Park
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.553-563
    • /
    • 2023
  • Objective: Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging-derived tractography (DTI-t) contribute to the localization of language areas, but their accuracy remains controversial. This study aimed to investigate the diagnostic performance of preoperative fMRI and DTI-t obtained with a simultaneous multi-slice technique using intraoperative direct cortical stimulation (DCS) or corticocortical evoked potential (CCEP) as reference standards. Materials and Methods: This prospective study included 26 patients (23-74 years; male:female, 13:13) with tumors in the vicinity of Broca's area who underwent preoperative fMRI and DTI-t. A site-by-site comparison between preoperative (fMRI and DTI-t) and intraoperative language mapping (DCS or CCEP) was performed for 226 cortical sites to calculate the sensitivity and specificity of fMRI and DTI-t for mapping Broca's areas. For sites with positive signals on fMRI or DTI-t, the true-positive rate (TPR) was calculated based on the concordance and discordance between fMRI and DTI-t. Results: Among 226 cortical sites, DCS was performed in 100 sites and CCEP was performed in 166 sites. The specificities of fMRI and DTI-t ranged from 72.4% (63/87) to 96.8% (122/126), respectively. The sensitivities of fMRI (except for verb generation) and DTI-t were 69.2% (9/13) to 92.3% (12/13) with DCS as the reference standard, and 40.0% (16/40) or lower with CCEP as the reference standard. For sites with preoperative fMRI or DTI-t positivity (n = 82), the TPR was high when fMRI and DTI-t were concordant (81.2% and 100% using DCS and CCEP, respectively, as the reference standards) and low when fMRI and DTI-t were discordant (≤ 24.2%). Conclusion: fMRI and DTI-t are sensitive and specific for mapping Broca's area compared with DCS and specific but insensitive compared with CCEP. A site with a positive signal on both fMRI and DTI-t represents a high probability of being an essential language area.

Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise

  • Joo Hee Kim;Hyun Jung Yoon;Eunju Lee;Injoong Kim;Yoon Ki Cha;So Hyeon Bak
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.131-138
    • /
    • 2021
  • Objective: Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce dose while maintaining image quality. The purposes of this study was to evaluate image quality and noise of LDCT scan images reconstructed with DLIR and compare with those of images reconstructed with the adaptive statistical iterative reconstruction-Veo at a level of 30% (ASiR-V 30%). Materials and Methods: This retrospective study included 58 patients who underwent LDCT scan for lung cancer screening. Datasets were reconstructed with ASiR-V 30% and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The objective image signal and noise, which represented mean attenuation value and standard deviation in Hounsfield units for the lungs, mediastinum, liver, and background air, and subjective image contrast, image noise, and conspicuity of structures were evaluated. The differences between CT scan images subjected to ASiR-V 30%, DLIR-M, and DLIR-H were evaluated. Results: Based on the objective analysis, the image signals did not significantly differ among ASiR-V 30%, DLIR-M, and DLIR-H (p = 0.949, 0.737, 0.366, and 0.358 in the lungs, mediastinum, liver, and background air, respectively). However, the noise was significantly lower in DLIR-M and DLIR-H than in ASiR-V 30% (all p < 0.001). DLIR had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than ASiR-V 30% (p = 0.027, < 0.001, and < 0.001 in the SNR of the lungs, mediastinum, and liver, respectively; all p < 0.001 in the CNR). According to the subjective analysis, DLIR had higher image contrast and lower image noise than ASiR-V 30% (all p < 0.001). DLIR was superior to ASiR-V 30% in identifying the pulmonary arteries and veins, trachea and bronchi, lymph nodes, and pleura and pericardium (all p < 0.001). Conclusion: DLIR significantly reduced the image noise in chest LDCT scan images compared with ASiR-V 30% while maintaining superior image quality.

Determination of dynamic threshold for sea-ice detection through relationship between 11 µm brightness temperature and 11-12 µm brightness temperature difference (11 µm 휘도온도와 11-12 µm 휘도온도차의 상관성 분석을 활용한 해빙탐지 동적임계치 결정)

  • Jin, Donghyun;Lee, Kyeong-Sang;Choi, Sungwon;Seo, Minji;Lee, Darae;Kwon, Chaeyoung;Kim, Honghee;Lee, Eunkyung;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.243-248
    • /
    • 2017
  • Sea ice which is an important component of the global climate system is being actively detected by satellite because it have been distributed to polar and high-latitude region. and the sea ice detection method using satellite uses reflectance and temperature data. the sea ice detection method of Moderate-Resolution Imaging Spectroradiometer (MODIS), which is a technique utilizing Ice Surface Temperature (IST) have been utilized by many studies. In this study, we propose a simple and effective method of sea ice detection using the dynamic threshold technique with no IST calculation process. In order to specify the dynamic threshold, pixels with freezing point of MODIS IST of 273.0 K or less were extracted. For the extracted pixels, we analyzed the relationship between MODIS IST, MODIS $11{\mu}m$ channel brightness temperature($T_{11{\mu}m}$) and Brightness Temperature Difference ($BTD:T_{11{\mu}m}-T_{12{\mu}m}$). As a result of the analysis, the relationship between the three values showed a linear characteristic and the threshold value was designated by using this. In the case ofsea ice detection, if $T_{11{\mu}m}$ is below the specified threshold value, it is detected as sea ice on clear sky. And in order to estimate the performance of the proposed sea ice detection method, the accuracy was analyzed using MODIS Sea ice extent and then validation accuracy was higher than 99% in Producer Accuracy (PA).