최근 국지성 폭우로 인한 침수 피해가 빈번하게 발생함에 따라 침수 피해를 사전 예방하기 위한 침수 예측 연구가 진행되고 있다. 본 논문에서는 머신 러닝 기반으로 강우 데이터를 이용해 침수 깊이와 침수 위치를 예측하는 모델을 개발하는 방법을 연구한다. 실시간 강우량을 입력으로 사용하여 다양한 강우 분포 패턴에 강건하게 구성하고 적은 메모리로 모델을 학습시킬 수 있는 2가지 데이터 셋(set) 구성 방법을 제시하였다. 침수에 유의미한 영향을 미치는 valid total 데이터는 침수 위치는 잘 예측했지만, 특정 강우 패턴에 대해 값이 다르게 나타나는 경향을 띠었다. 부분적이지만 침수에 영향을 미치는 영역을 valid local이라 한다. Valid local은 고정점 방법에 대해서는 잘 학습되었지만, 임의점 방법에 대해서는 침수 위치를 정확하게 나타내지 못했다. 본 연구를 통해 실시간으로 침수 깊이와 위치를 예측할 수 있게 되어 큰 피해를 예방할 수 있을 것으로 예상된다.
본 논문에서는 시간지원 데이터를 과거 세그먼트, 현재 세그먼트, 그리고 미래 세그먼트로 분리한 저장 구조를 기반으로 하는 네 가지 데이터 이동 방법을 제안하였다. 제안한 데이터 이동 방법은 시간단위에 의한 이동 방법, LST-GET(Least valid Start Time-Greatest valid End Time)에 의한 이동 방법, AST-AET(Average valid Start Time-Average valid End Time)에 의한 이동 방법, 그리고 Min-Overlap에 의한 이동 방법이 있다. 각각의 이동 방법에서는 세그먼트의 경계값, 각 세그먼트에 저장되는 개체 버전 등을 정의하였다. 제안한 이동 방법에 대해서 사용자 질의에 대한 평균 응답 시간을 측정하였다. 실험결과, LLT(Long Lived Tuples)가 없는 경우에는 LST-GET에 의한 이동 방법, 그리고 AST-AET에 의한 이동 방법이 시간단위에 의한 이동 방법보다 성능이 우수하였다. LLT가 있는 경우에는 LST-GET에 의한 이동 방법의 성능이 저하되었다. AST-AET에 의한 이동 방법은 시간단위에 의한 이동 방법과 LST-GET에 의한 이동 방법보다 질의에 대한 성능이 우수하였다. Min-Overlap에 의한 이동 방법은 질의에 대한 평균 응답 시간에서 AST-AET에 의한 이동 방법과 비슷한 결과를 보였고, 공간 이용율 측면에서는 AST-AET에 의한 이동 방법보다 효율적이었다.
본 논문에서는 시간지원 데이터를 과거 세그먼트, 현재 세그먼트, 그리고 미래 세그먼트로 분리한 저장 구조를 기반으로 하는 AST-AET(Average valid Start Time-Average valid End Time) 데이터 이동 방법을 제안한다. 제안한 AST-AET를 계산하는 방법과 이동 대상 이 되는 개체 버전을 정의한다. AST와 AET를 계산하는 방법과 이동 대상이 되는 개체 버 전을 검색하고 이동하는 과정을 보인다. 도한, 제안하는 AST-AET 데이터 이동방법과 기존 의 LST-GET(Least valid Start Time-Greatest valid End Time) 데이터 이동 방법의 사용 자 질의에 대한 평균 응답시간을 비교한다. 실험 결과에 의하면, LLT(Long Lived Tuples)가 없윽 때는 현재 세그먼트의 크기가 비슷 하기 때문에 두 이동 방법의 평균 응답 시간이 비슷하였다. 그러나 LLT가 있을 때에는 LST-GET 데이터 이동방법의 현재 세그먼트 크기가 커지기 때문에, AST-AET 데이터 이 동 방법의 평균 응답 시간이 LST-GET 데이터 이동 방법보다 작았다. 또한, 시간지원 질의 의 평균 응답 시간이 LST-GET 데이터 이동 방법보다 전반적으로 작았다.
인공지능 기술의 가장 큰 근간은 학습 가능한 데이터이다. 최근 정부나 사기업에서 수집·생산하는 데이터의 종류와 양이 기하급수적으로 증가하고 있지만, 실제 기계학습에 활용 가능한 데이터의 확보로는 아직까지 이어지지 않고 있다. 이에 본 연구에서는 기계학습에 실제 활용 가능한 데이터가 갖추어야 할 조건에 대해 논의하고, 실제 사례연구를 통해 데이터 품질을 저하시키는 요인을 파악한다. 이를 위해 공공빅데이터를 활용해 예측 모델을 개발한 대표사례를 선정, 공공데이터포털로부터 실제 문제 해결을 위한 데이터를 수집 후 데이터 품질을 확인하였다. 이를 통해 유효한 데이터 선별 기준을 적용하고 후처리한 결과와의 차이를 보인다. 본 연구의 궁극적인 목적은 인공지능의 핵심인 기계학습 기술 개발에 앞서 가장 근본적으로 선결되어야 할 데이터 품질을 관리하고 유효한 데이터를 축적하기 위한 기반 마련에 있다.
시간지원 데이터 모텔은 시간 의미를 데이터 모델에 추가하여 시간에 따라 변화된 정보를 처리할 수 있는 데이터 모델이다. 시간지원 데이터 모델은 실세계에서 사건이 발생한 시간인 유효시간을 지원하는 데이터 모델과 데이터가 수록된 시간을 지원하는 거래시간 데이터 모델 그리고 거래시간과 유효시간을 모두 지원하는 이원시간 데이터 모델이 있다. 대부분의 시간지원 데이터 모델은 관계형 모델을 확장하여 시간지원 데이터를 처리할 수 있도록 설계된다. 시간지원 데이터 모델의 두부류는 시간을 결합하는 단위에 따라 튜플 타임 스탬프와 속성 타임 스탬프의 두 가지 형식이 있다. 본 논문에서는 기존의 데이터 모델에서 시간추가를 위한 기본적인 시간 개념과 시간지원 데이터 모델을 위한 고려사항을 설명하고 시간지원 데이터 모텔을 지원시간에 따라 비교하였다. 또한 유효시간이 지원되는 시간 지원 집계에 적합한 데이터 모델을 제안하고 그 성능을 분석 하였다.
Su, Yan-Jen;Tung, Chi-Hong;Chang, Leh-Rong;Chen, Jin-Liang;Chang, Calvin
International Journal of Precision Engineering and Manufacturing
/
제9권4호
/
pp.79-82
/
2008
A method is described for ideally reconstructing the profile from a surface profiling measurement containing a reasonable amount of null measurement data. The proposed method can conjecture lost information and rectify irregular data that result due to bad measuring environments, signal transmission noise, or instrument-induced errors, The method adopts the concept of computer graphics and consists of several processing steps. First, a search for valid data in the neighborhood of the null data is performed. The valid data are then grouped and their contours are extracted. By analyzing these contours, a bounding box can be obtained and the general distribution of the entire area encompassing the valid and null data is determined Finally, an ideal surface model is overlaid onto the measurement results based on the bounding box, generating a complete reconstruction of the calculations, A surface-profiling task on a liquid crystal display photo spacer is used to verify the proposed method. The results are compared to those obtained through the use of a scanning electron microscope to demonstrate the accuracy of the proposed method.
이 연구는 농구 경기장내 마케팅의 효용성을 확인하기 위해서 마케팅의 여러 연구 기법들 중 시선추적 기술을 이용하여 동공이 확장 되었을 때의 시선 관찰 및 관심도를 측정하고 비교 분석하였다. 특히 동공이 확장된 구간을 산출하기 위해 유효테이터를 중심으로 동공의 크기가 2시그마 범위 상위 2.275%일 때의 구간별 데이터를 정리하고 이전 연구에서 산출된 3시그마의 상위 0.135%일 때의 구간별 데이터와 전체 유효 데이터를 주시 빈도에 따른 변곡점으로 구분하여 분석하였다. 또한 전체 유효 데이터와 동공의 크기가 유의미하게 커졌다고 판단되는 범위들 간의 상관도를 분석하였다. 그 결과 가장 시선이 많이 머무른 구간과 동공이 크기가 유의미하게 커진 부분은 완전히 일치하지는 않았으나, 전체 유효 데이터와 동공크기 2시그마 상위 데이터의 상관분석은 .805로 가장 높은 상관관계를 나타내었으며, 동공크기 2시그마 상위 데이터와 동공크기 3시그마 상위 데이터의 상관분석은 .781의 상관관계를 보였고 전체 유효데이터와 동공크기 3시그마 상위 데이터 상관분석은 .683의 상관관계를 보였다. 따라서 동공의 크기가 확장 되어진 구간과 시선추적 데이터에서 시선이 많이 머무른 구간이 유사함을 알 수 있었으나, 동공의 크기가 유의미하게 확장되었다고 판단되어지는 구간의 데이터 일수록 전체 데이터와의 상관도가 떨어지는 것을 알 수 있었다.
The impact of artefacts in archived wind observations on the design wind speed obtained by extreme value analysis is demonstrated using case studies. A signpost protocol for detecting candidate artefacts is described and its performance assessed by comparing results against previously validated data. The protocol targets artefacts by exploiting the serial correlation between observations. Additional "sieve" algorithms are proposed to identify types of correctable artefact from their "signature" in the data. In extreme value analysis, artefacts displace valid observations only when they are larger, hence always increase the design wind speed. Care must be taken not identify large valid values as artefacts, since their removal will tend to underestimate the design wind speed.
K-means is a popular and efficient data clustering method that only uses intra-cluster distance to establish a valid index with a previously fixed number of clusters. K-means is useless without a suitable number of clusters for unsupervised data. This paper aimsto propose the Group Search Optimization (GSO) using Silhouette to find the optimal data clustering solution with a number of clusters for unsupervised data. Silhouette can be used as valid index to decide the number of clusters and optimal solution by simultaneously considering intra- and inter-cluster distances. The performance of GSO using Silhouette is validated through several experiment and analysis of data sets.
Multihop data delivery in vehicular ad hoc networks (VANETs) suffers from the fact that vehicles are highly mobile and inter-vehicle links are frequently disconnected. In such networks, for efficient multihop routing of road safety information (e.g. road accident and emergency message) to the area of interest, reliable communication and fast delivery with minimum delay are mandatory. In this paper, we propose a multihop vehicle-to-infrastructure routing protocol named Vertex-Based Predictive Greedy Routing (VPGR), which predicts a sequence of valid vertices (or junctions) from a source vehicle to fixed infrastructure (or a roadside unit) in the area of interest and, then, forwards data to the fixed infrastructure through the sequence of vertices in urban environments. The well known predictive directional greedy routing mechanism is used for data forwarding phase in VPGR. The proposed VPGR leverages the geographic position, velocity, direction and acceleration of vehicles for both the calculation of a sequence of valid vertices and the predictive directional greedy routing. Simulation results show significant performance improvement compared to conventional routing protocols in terms of packet delivery ratio, end-to-end delay and routing overhead.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.