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A method is described for ideally reconstructing the profile from a surface profiling measurement containing a
reasonable amount of null measurement data. The proposed method can conjecture lost information and rectify
irregular data that result due to bad measuring environments, signal transmission noise, or instrument-induced
errors. The method adopts the concept of computer graphics and consists of several processing steps. First, a
search for valid data in the neighborhood of the null data is performed. The valid data are then grouped and their
contours are extracted. By analyzing these contours, a bounding box can be obtained and the general distribution
of the entire area encompassing the valid and null data is determined. Finally, an ideal surface model is overlaid
onto the measurement results based on the bounding box, generating a complete reconstruction of the calculations.
A surface-profiling task on a liquid crystal display photo spacer is used to verify the proposed method. The results
are compared to those obtained through the use of a scanning electron microscope to demonstrate the accuracy of

the proposed method.

1. Introduction

(a) (b
Fig. 1 (a) Actual topography of the hill-shaped LCD spacer as

measured by the SEM (b) White light interferometer results The
edge area could not be detected by the reflected light, producing null
measurement data

Light interferometric technology allows for fast, extremely fine,
nondestructive inspections, and is therefore widely used for micro-
substance measurements. Surface topographies with high inclinations,
however, cannot be correctly detected due to the wide angle of the
reflected light, resulting in insufficient measurement data. Figure 1
shows that the actual topography of a liquid crystal display (LCD)
spacer, as measured using a scanning electron microscope (SEM),
should be shaped like a hill. But because the edge area inclination is
too high (>20°), the light interferometer results indicate null
measurement data around the edges.

This problem is commonly handled by using numerical methods'
to fit the measured input data. The null fields are then reconstructed
using the fitted curves or surfaces. The least squares method is a
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common approach; by estimating the degree of the result, it can
produce an approximate curve that has a minimal square difference
with the input data. Splines are widely applied as well since they
produce smooth results that are closer to the input data by
consolidating continuous basis functions.

The most obvious disadvantage of the least squares method is that
the expressed topography of a polynomial is limited and not suitable
for all possible situations. Splines, however, are easily affected by
noise and create oscillation problems. A low-pass filter can be applied
to reduce the noise before fitting, but this alters the originally
measured results.

To overcome the problems encountered when using traditional
numerical methods, we propose an algorithm that can reconstruct the
lost data from high-inclination topographies based on the limited
measuring information and optical limits. We describe the
reconstruction accuracy, process speed, and stability of our model,
and consider the noise and robustness of the resulting surface
topography.

2. Related Work

2.1 Simulation

Carr et al* authored a widely quoted thesis on data reconstruction.
They used radial basis functions to calculate space enantiomeric
implicit functions that can be both accurate and smooth
simultaneously, and they used an implicit function to reconstruct the
data. While calculating the implicit functions, they reduced the
number of calculations required to determine the radial basis function,
increasing the calculation speed to obtain a large quantity of data
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(>300,000 data points) in under 3 min. Their method included a data
parameter that could be used to adjust the smoothness, giving the user
complete control over the implicit function. The method used the
marching cubes technique™® to reconstruct the curved iso-surface
from the implicit functions. And Yoo® applied domain decomposition
method to reduce the complication of computing.

Davis et al.® used diffusion to extend the Curless and Levoy’
distance function concept of the topography pending reconstruction.
They then applied marching cubes to the distance function to obtain
an iso-surface, and used this in an iterative fashion until the surface
contour was completely reconstructed. Their method only requires
data points around the pending topography to reconstruct and
calculate the iso-surface. The storage space is much smaller than that
required by Carr et al.,? and the calculations are much simpler.

Nooruddin and Turk® took a 2D imagery method and extended it
to 3D data. First, they changed the surface contours into voxels to
eliminate the thin-shelled situation. They then used accelerated
imaging of the distance function to process the Gonzalez and Woods’
closing calculation method to patch null data. Finally, they used
marching cubes to reconstruct the iso-surface. This method of
calculation is simple and the data obtained after reconstruction are
smooth, but all of the data points are required during the calculations.

Pauly et al,'"® compared the pending contour to all models stored
in a database, and then picked the closest one. By applying the least
error principle to complete the reconstruction, they adjusted the
infrastructure of the model and then laid it on top of the pending
contour. They then returned the results to the database to expand its
contents. The great advantage of this method over the others is that
the null data pending reconstruction can have a great range. The
problem encountered in real-life applications is how to effectively
adjust the known model.

3. Applied Method

In the present study, we adapt the method of Pauly et al.'” to
obtain more accurate reconstruction results and provide a more
convenient method of applying the model. We describe an effective
registration approach and interpolation means to reconstruct the
spacer shown in Fig. 1.

3.1 Constructing the model
Because the spacer is axisymmetrical, we used the following steps

to reconstruct the spacer model, as illustrated in Fig. 2.

1. Obtain the side contour using a SEM to measure the spacer.

2. Use half of the side contour and rotate around an imaginary
symmetrical axis once. This type of revolution is a common
method of constructing a model in computer-aided geometric
design."

3. The result of the side contour rotation gives a model for the
spacer. This model is the bounding box whose parameter space
is in the interval of [0,1], and is used with and laid on the
pending topography in world space.

3.2 Bounding box search for the pending topography
After constructing the parameter space, we require the pending

topography in world space for overlaying purposes. The steps,

illustrated in Fig. 3, are as follows.

1. Use a threshold to obtain the pending spacer since the spacer
holds the panels and has a greater height.

2. Obtain the complete contour data points of the spacer using chain
rule searching,® a common image handling method that
repeatedly searches for neighboring contour points by using four-
neighborhood or eight-neighborhood techniques.

3. Apply a multiplier to the contour data points. The value

with the least error gives the most suitable equation for spreading the

data along the long axis of the bounding box. When the largest error
equation is used for the short axis of the bounding box, the two axes

have a positive relationship. The tightest-fitting bounding box is
formed by adding the maximum height of the spacer and the base
height.
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Fig. 2 Spacer reconstruction method (a) obtain the side profile of the
spacer contour from SEM measurements (b) rotate once about the
side contour (¢) the surface contour after rotation becomes the model
in [0,1] bounding box parameter space
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Fig. 3 Search method for the bounding box of the pending
topography (a) use a threshold to obtain the pending spacer (b) find
the contour data point of the spacer using chain rule searching and (c)
use the least squares method based on the bounding data points to
find the tightest-fitting bounding box

3.3 Bounding box search for the pending topography

The bounding box in parameter space is overlaid onto the
bounding box of the pending topography in world space, completing
the reconstruction of the spacer, as illustrated in Fig. 4(a). However,
an aliasing problem occurs since the original measured data and the
reconstructed model are not continuous, as shown in Fig. 4(b).
Therefore, we include smoothness calculations in the overlay, which
induce a better match between the model and measured data.

The model can be further adjusted according to the measured data
after it is mapped into object space. The model sampling height inside
the bounding box is stretched to match the measured data and obtain a
scale ratio. All samples of the model are then assigned a scale ratio by
interpolating the known data. Finally, each sample of the model is
individually corrected by its scale ratio, as shown by the curve in Fig.
4(c). This method is effective and has a high degree of accuracy.

4. Results

The object used to test the proposed calculation method, shown in
Fig. 5(a), is a 640 x 480 LCD panel obtained from a white light
interferometer that included three pending reconstruction spacers.
The computer system consisted of a 1.8 GHz Intel CPU with 1 GB of
RAM running Microsoft Windows XP. The reconstruction is shown
in Fig. 5(b). The auto-imaging calculations required 1 s.
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Following the testing method of Kobayashi et al' figure 6
compares the results obtained before and after the reconstruction with
SEM data. We scaled the profiles to the same ratio as the SEM
measurements and overlapped them to illustrate any differences.
Before reconstruction (Fig. 6(a)), the original data did not include any
information about the inclined side, resulting in incorrect contours.
After reconstruction (Fig. 6(b)), we obtained a tight curve that
matched the profile of the actual object.

We also applied our algorithm to a more complicated bumper that
included a multilayer structure and a large inclination. The original
data are shown in Fig. 7(a) and the reconstructed results are presented
in Fig. 7(b) and (c). Our proposed algorithm recovered the lost
information and produced smooth results.

(by
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Fig. 4 (a) Parameter space and bounding box overlay (b) Jagged edge
aliasing phenomenon created before smoothing (c) Comparison of
known measured data (black line) and the proposed mode! before
smoothing (blue line) and after smoothing, and applying a weighted
average (red line)

©
Fig. 7 (a) Bumper before reconstruction (b) results after reconstru
ction and (¢) the final bumper model
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