• Title/Summary/Keyword: Valence band structure

Search Result 92, Processing Time 0.026 seconds

Valence Band Photoemission Study of Co/Pd Multilayer (광전자분광법을 이용한 Co/Pd 다층박막의 전자구조연구)

  • Kang, J.-S.;Kim, S.K.;Jeong, J.I.;Hong, J.H.;Lee, Y.P.;Shin, H.J.;Olson, C.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.48-55
    • /
    • 1993
  • We report the photoemission (PES) studies for the Co/Pd multilayter. The Co 3d PES spectrum of Co/Pd exhibits two interesting features, one near the Fermi energy, $E_{F}$, and another at ~2.5 eV below $E_{F}$. The Co 3d peak near $E_{F}$ of Co/Pd is much narrower than that of the bulk Co, consistent with the enhanced Co magnetic moment in Co/Pd compared to that in the bulk Co. The Co 3d feature at ~-2.5 eV resembles the Pd valence band structures, which suggests a substantial hybridization between the Co and Pd sublayers. The Co 3d PES spectrum of Co/Pd is compared with the existing band structures, obtained using the local spin density functional calculations. A reasonable agreement is found concerning the bandwidth of the occupied part of the Co 3d band, whereas a narrow Co 3d peak near $E_{F}$ seems not to be described by the band structure calculations.

  • PDF

Growth of ZnO thin film by pulsed laser deposition and photocurrent study on the splitting of valance band (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.160-168
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_{2}O_{3}$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_{2}O_{3}$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}1016cm^{-3}$ and $299cm^{2}/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$=3.3973 eV-($2.69{\times}10^{-4}$ eV/K)$T^{2}$/(T+463K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{6}$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-$, and $C_{1}-$exciton peaks for n = 1.

Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

Temperature dependence of photocurrent spectra for $AgGaSe_2$ single crystal thin film grown by hot wall epitaxy (Hot Wall Epitaxy(HWE) 법에 의해 성장된 $AgGaSe_2$ 단결정 박막의 광전류 온도 의존성)

  • Hong, Kwang-Joon;Bang, Jin-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.179-180
    • /
    • 2007
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $AgGaSe_2$ thin films measured with Hall effect by van der Pauw method are $4.05{\times}\;10^{16}/cm^3$, $139\;cm^2/V{\cdot}s$ at 293 K. respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501\;eV\;-\;(8.79{\times}10^{-4}\;eV/K)T^2$/(T + 250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_2$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the phcitocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}So$ definitely exists in the $\Gamma_5$ states of the valence band of the $AgGaSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth and photocurrent study on the splitting of the valence band for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)범에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong Myungseak;Hong Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.244-252
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $_CuInSe2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.1851 eV -($8.99\times10^{-4} eV/K)T^2$(T + 153 K). The crystal field and the spin-orbit splitting energies for the valence band of the CuInSe$_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the $\Gamma$6 states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-, B_1$-와 $C_1$-exciton peaks for n = 1.

Photocurrent study on the splitting of the valence band and growth of $Cdln_2Te_4$ single crystal by Bridgman method (Bridgman법에 의한 $Cdln_2Te_4$단결정의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • 홍광준;이관교;이봉주;박진성;신동찬
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • A stoichiometric mixture for $CdIn_2Te_4$ single crystal was prepared from horizontal electric furnace. The $CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The $CdIn_2Te_4$ single crystal was evaluated to be tetragonal by the power method. The (001) growth plane of oriented $CdIn_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $CdIn_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61\times 1016 \textrm {cm}^{-3}$ and 242 $\textrm{cm}^2$/V.s at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $1.4750ev - (7.69\times10^{-3})\; ev/k)\;T^2$/(T + 2147k).The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2Te_4$ single crystal have been estimated to be 0.2704 eV and 0.1465 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the $\Gamma_7$ states of the valence band of the $CdIn_2Te_4$ single crystal. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-} B_{1-}$ and Cl-exciton peaks for n = 1.

Photocurrent Study on the Splitting of the Valence Band and Growth of $AgInS_2$GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $AgInS_2$단결성 박막의 성장과 가전자대 갈라짐에대한 광전류 연구)

  • 홍광준
    • Korean Journal of Crystallography
    • /
    • v.12 no.4
    • /
    • pp.197-206
    • /
    • 2001
  • A stoichiometric mixture of evaporating materials for AgInS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films. AgInS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy(HWE)system. The source and substrate temperatures were 680℃ and 410℃, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of AgInS₂ single crystal thin film mea-sured from Hall effect by van der Pauw method are 9.35×10/sup 16/㎤ and 294㎠/V·s at 293K respectively. The temperature dependence of the energy band gap of the AgInS₂ obtained from the absorption spectra was well described by the Varshni's relation , E/sub g/(T)=2.1365eV-(9.89×10/sup-3/eV/K/)T²(T+2930K). The crystal field and the spin-orbit splitting energies for the valence band of the AgInS₂ have been estimated to be 0.1541eV and 0.0129 eV, respectively, by means of the photocur-rent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the Γ/sub 5/ states of the valence band of the AgInS₂ /GaAs epilayer. The three photo-current peaks ovserved at 10K are ascribed to the A₁-, B-₁and C₁-exction peaks for n=1.

  • PDF

Photocurrent Study on the Splitting of the Valence Band and Growth of BaIn2Se4 epilayers by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaIn2Se4 에피레어 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Jeong, Junwoo;Lee, Kijeong;Jeong, Kyunga;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • A stoichiometric mixture of evaporating materials for $BaIn_2Se_4$ epilayers was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the epilayers was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2Se_4$ epilayers measured from Hall effect by van der Pauw method are $8.94{\times}10^{17}cm^{-3}$ and 343 $cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.6261 eV-$(4.9825{\times}10^{-3}eV/K)T^2/(T+558 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2Se_4$ have been estimated to be 116 meV and 175.9 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n=21.

Growth and optical conductivity properties for BaIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaIn2S4 단결정 박막 성장과 광전도 특성)

  • Jeong, Kyunga;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2S_4$ single crystal thin films measured from Hall effect by van der Pauw method are $6.13{\times}10^{17}cm^{-3}$ and $222cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.0581eV-(3.9511{\times}10^{-3}eV/K)T^2/(T+536K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2S_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2S_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{24}$-exciton peaks for n = 24.

Simulation of Optical Characteristics of 1.3 μm GaAs-Based GaAsSb/InGaAs and GaAsSb/InGaNAs Quantum Well Lasers for Optical Communication (광통신용 GaAs 기반 1.3 μm GaAsSb/InGaAs와 GaAsSb/InGaNAs 양자우물 레이저의 광학적특성 시뮬레이션)

  • Park, Seoung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Optical gain characteristics of $1.3{\mu}m$ type-II GaAsSb/InGaNAs/GaAs trilayer quantum well structures were studied using multi-band effective mass theory. The results were compared with those of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structures. In the case of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure, the energy difference between the first two subbands in the valence band is smaller than that of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure. Also, $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure shows larger optical gain than $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure. This means that GaAsSb/InGaNAs/GaAs system is promising as long-wavelength optoelectronic devices for optical communication.