• Title/Summary/Keyword: Vacuum reduced pressure

Search Result 94, Processing Time 0.033 seconds

Optimization of Vacuum Cleaner Handle Using Approximate Model and NSGA-II (근사 모델과 NSGA-II를 이용한 진공청소기 손잡이 근사최적설계)

  • Yun, Minro;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • The major parts of a vacuum cleaner are molded. The vacuum cleaner works in multi-load conditions. Therefore, the designer needs to optimize the structure and injection molding conditions simultaneously. Here, the main factor of design is the rib shape and thickness. The greater the rib thickness, the greater the stiffness of the structure. However, it causes an increase in weight. On the other hand, the lower the rib thickness, the greater the increase in the injection pressure. However, the weight will be reduced. Therefore, the designer needs to optimize the rib shape and thickness for structure stiffness and injection molding. In order to solve this problem, we propose an optimization method using D.O.E and a response surface model, which is a multi-objective optimization method using the multi-objective genetic algorithm.

Pore Condensation-Based Separation of VOCs by a Microporous Ceramic Membrane (미세다공성 세라믹 막에서의 가공응축기구에 의한 휘발성 유기화합물의 분리)

  • Cha, Jun-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.E
    • /
    • pp.19-28
    • /
    • 1996
  • A pore concensation-based separation technique was studied experimentally using toluene and xylene in a nitrogen stream. The removal rate of toluene and xylene on a microporous ceramic membrane was enhanced by increasing the partial pressure difference across the membrane, but the selectivity was reduced with increasing flux of nitrogen. This was found both in vacuum and pressure modes of operation. The experimental results from this study suggest that the pores mear the inlet portion of the module were filled with the organic solvent while the pores near the exit section of the module were slightly opened as the solvent concentration was depleted along the module. In the case of xylene, the rate of N$_{2}$ permeation was reduced considerably relative to toluene, resulting in a much higher separation gactor. Condensibility of xylene appeared to be higher than that of toluene, the potential for pore condensation-based separation of xylene was also found to be higher than that for toluene.

  • PDF

Optical Properties and Structural Characteristics of Gallium Nitride Thin Films Prepared by Radio Frequency Magnetron Sputtering

  • Cho, Yeon Ki;Kim, Joo Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.248.2-248.2
    • /
    • 2014
  • In this study, the optical properties and structural characteristics of gallium nitride (GaN) thin films prepared by radio frequency (RF) magnetron sputtering were investigated. Auger electron and X-ray photoelectron spectra showed that the deposited films consisted mainly of gallium and nitrogen. The presence of oxygen was also observed. The optical bandgap of the GaN films was measured to be approximately 3.31 eV. The value of the refractive index of the GaN films was found to be 2.36 at a wavelength of 633 nm. X-ray diffraction data revealed that the crystalline phase of the deposited GaN films changed from wurtzite to zinc-blende phase upon decreasing the sputtering gas pressure. Along with the phase change, a strong dependence of the microstructure of the GaN films on the sputtering gas pressure was also observed. The microstructure of the GaN films changed from a voided columnar structure having a rough surface to an extremely condensed structure with a very smooth surface morphology as the sputtering gas pressure was reduced. The relationship between the phase and microstructure changes in the GaN films will be discussed.

  • PDF

Study on the Evaporation Behaviour of Electrolytic Manganese Melt Under Reduced Pressure (감압 하에서 전해 망간 용탕의 증발거동에 관한 연구)

  • Hong, Seong-Hun;Jeon, Byoung-Hyuk;Wi, Chang-Hyun;Shin, Dong-Yub;You, Byung-Don;Seo, Seong-Mo;Park, Jong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.828-833
    • /
    • 2009
  • As a fundamental study in the development of a distillation process for ferromanganese alloy melts, the evaporation behavior of an electrolytic manganese melt under reduced pressure was investigated. The melt temperature, vacuum degree, surface area of the melt, and reaction time were considered as experimental variables. The amount of vaporized manganese increases linearly as the reaction time increases, and the evaporation of manganese was promoted by increasing the temperature and surface area of the melt. In the pressure range below the equilibrium vapor pressure of manganese, the amount of vaporized manganese per unit surface area of the melt increased sharply with a decrease of the pressure in the reaction chamber. An empirical equation for the evaporation rate of manganese was derived by regression analysis. The evaporation coefficient of manganese was determined to be approximately $3.84{\times}10^{-3}(g{\cdot}K^{1/2})/(Pa{\cdot}cm^2{\cdot}min)$ under the investigated conditions.

High pressure processing for dark-firm-dry beef: effect on physical properties and oxidative deterioration during refrigerated storage

  • Utama, Dicky Tri;Lee, Seung Gyu;Baek, Ki Ho;Chung, Woon Si;Chung, In Ae;Jeon, Jung Tae;Lee, Sung Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.424-431
    • /
    • 2017
  • Objective: Study on the application of high pressure processing (HPP) for dark-firm-dry (DFD) beef was conducted to observe whether HPP has any impact on physical properties and to evaluate oxidative deterioration during refrigerated storage under vacuum. Methods: The longissimus lumborum muscles obtained from Friesian Holstein steers ($33{\pm}0.5$ months old) with 24-h postmortem pH higher than 6.0 were vacuum-packed and subjected to pressurization at 200, 400, and 600 MPa for 180 s at $15^{\circ}C{\pm}2^{\circ}C$; the samples were then stored for 9 days at $4^{\circ}C{\pm}1^{\circ}C$ and compared with control (0.1 MPa). Results: HPP increased meat pH by 0.1 to 0.2 units and the tenderness of cooked DFD beef significantly with no significant effects on meat texture profile. The stability of meat pH was well maintained during refrigerated storage under vacuum. No clear effects were found on the activity of catalase and superoxide dismutase, however, glutathione peroxidase activity was significantly reduced by high pressure. HPP and storage time resulted in aroma changes and the increasing amount of malondialdehyde and metmyoglobin relative composition. Conclusion: Although the increasing amount of malondialdehyde content, metmyoglobin formation and aroma changes in HPP-treated samples could not be avoided, HPP at 200 MPa increased $L^*$ and $a^*$ values with less discoloration and oxidative deterioration during storage.

Axial Solid Holdup in a Circulating Fluidized Bed Plasma Reactor under Reduced Pressure (감압 순환유동층 플라즈마 반응기의 축방향 고체체류량)

  • Park, Sounghee
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.527-532
    • /
    • 2016
  • The effects of gas velocity and solid circulation rate on the axial solid holdup distribution have been determined in a 10 mm-I.D. ${\times}$ 800 mm-high circulating fluidized bed plasma reactor under reduced pressure (1torr). Polystyrene polymer powder and nitrogen gas are used as solid and gas materials respectively. The change of solid circulation rate by a large gas flow rate of the riser (40~80 sccm) is also possible by a relatively small gas flow rate of the solid recirculation part (6.6~9.9 sccm). The solid circulation rate in the reactor under reduced pressure increases with increasing aeration velocity in the solid recirculation part. The axial solid holdup in the riser decreases from the dense at the bottom to the dilute phase at the top section of the riser. Solid holdups at the axial positions in the riser increase linearly with increasing solid circulating velocity. From these results, we could determine the position of plasma load for good plasma ignition, maintain and plasma reaction.

Experimental Study on the Pressure Characteristics in the Cupping Therapy (부항요법(附缸療法)의 압력특성에 관한 실험적 연구)

  • Kim, Yang-Joong;Kim, Do-Ho;Yeom, Seung-Chul;Lim, Byung-Chuel;Choi, Youn-Sung;Lee, Geon-Hui;Kim, Hyung-Soo;Lee, Jai-Kyoo;Lee, Geon-Mok
    • Journal of Acupuncture Research
    • /
    • v.25 no.1
    • /
    • pp.121-130
    • /
    • 2008
  • Objectives : Cupping therapy is a stimulation therapy similar to acupuncture and moxibustion with effects that differ depending on the degree of stimulus. To make the strength of the skin objective in cupping therapy for this study, we measured negative pressure in the cupping jar and calculated the expansion rate of the skin. Subjects and Methods : In this study, we experimented with cupping therapy jars made for sale and used in clinics. We studied the pressure in the jars and the changes on the skin surface by measuring properties. We used commercial jars of four different volumes and diameters and tried to discover the properties on the size of the jar. Results : The results of experiment with the cupping therapy are as follows: 1. The lowest pressure in a jar was measured at $-600{\sim}610mmHg$, and the number of operating of vacuum pump for reaching lowest pressure was increased recording where the volume of the jar would be big, but the lowest pressure was not increased recording where the size of that would be big. 2. As the vacuum pump continued to operate, the pressure gradient in the jar got smaller which shows that the expansion rate of the skin was not linear. The pressure gradient shows different operational numbers on the vacuum pump near 0mmHg/operation unrelated to jar volume. 3. When negative pressure worked on the jar, air in the jar decreased. The percentage of air gradually reduced as the negative pressure acted in the jar. For example, the percentage of skin was 37-66% when the negative pressure, reatched -500mmHg. According to out results, different test areas generate different percentages of air in the jar, presumably related to skin elasticity. This phenomenon was most pronounced with the smallest jars. 4. At -500mmHg, the expansion rate of the skin was 1.57-1.9 on the abdomen, and $1.52{\sim}1.68$ on the back. The expansion rate of the skin appeared greater when the jar was relatively small, and it appeared smaller when the jar volume was relatively large relatively.

  • PDF

Membrane Degassing Process of Sweep Gas-vacuum Combination Type for Ammonia Removal (스윕 가스-진공 혼합식 탈기막 시스템을 활용한 암모니아 제거)

  • Yoon, Hongsik;Min, Taijin;Lee, Gunhee;Kim, Hyoung-Tak;Shin, Wanho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.835-842
    • /
    • 2022
  • In this study, the membrane degassing process of the sweep gas - vacuum combination type was proposed for ammonia wastewater treatment. The effect of pH, initial ammonia concentration and scale-up on ammonia degassing performance was investigated. As a result, as the pH and the initial ammonia concentration increased, the degassing permeate flux was improved. On the other hand, the ammonia mass transfer coefficient increased as the initial ammonia reduced, which seems to be due to the driving force of the sweep gas-vacuum combination type membrane degassing system proposed in this study. In addition, 80 mg NH3/min of the ammonia degassing rate was achieved using a 6×28 inch size module. Better degassing performance is expected if consideration for maintaining vacuum pressure is involved in the scale-up design.

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

The Analysis of the Discharging Characteristics on the Base Vacuum Level in a Vacuum In-line Sealing Process for High-efficiency PDP (고효율 PDP 제작을 위한 진공 인라인 실장에서의 초기 진공도에 따른 방전특성 분석)

  • Kwon Sang Jik;Jang Chan-Kyu;Kim Yong-Jae
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2006
  • We have examined the electrical and optical characteristics of the plasma display panel(PDP) produced by vacuum in-line sealing technology. We found that the luminous efficiency was decreased as the base vacuum level was increased. For the base vacuum level of $1\times10^{-3}$ Torr, the firing voltage was 235V at the discharge gas pressure of 400 Torr and the luminous efficiency was 0.8 lm/W at 180V sustaining pulse. However, for the base vacuum level of $1\times10^{-6}$ Torr, the firing voltage was reduced to 215V and the luminous efficiency was improved to 2.5lm/w. Finally, we demonstrated successfully the operation of tip-less PDP fabricated using vacuum in-line sealing method.