• 제목/요약/키워드: Vacuum plasma

검색결과 1,745건 처리시간 0.032초

Modelling of Optimum Design of High Vacuum System for Plasma Process

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.159-165
    • /
    • 2021
  • Electronic devices used in the mobile environments fabricated under the plasma conditions in high vacuum system. Especially for the development of advanced electronic devices, high quality plasma as the process conditions are required. For this purpose, the variable conductance throttle valves for controllable plasma employed to the high vacuum system. In this study, we analyzed the effects of throttle valve applications on vacuum characteristics simulated to obtain the optimum design modelling for plasma conditions of high vacuum system. We used commercial simulator of vacuum system, VacSim(multi) on this study. Reliability of simulator verified by simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve schematized as the modelling of throttle valve for the constant process-pressure of below 10-3 torr. Simulation results plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably in plasma process.

Effects of the Sheath on Determination of the Plasma Density of Microwave Probe

  • Kim, Dae-Woong;You, Shin-Jae;Na, Byung-Keun;You, Kwang-Ho;Kim, Jung-Hyung;Chang, Hong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.181-181
    • /
    • 2012
  • The microwave probe for measuring plasma density is widely used for its advantages: First, it is not affected by the reactive gas. Second, it can measure local plasma parameters such as plasma density, plasma potential and plasma temperature. Third, it is simple and robust. A cut-off probe is the one of the most promising microwave probe. Recently, Kim et al. reveals the physics of the cut-off probe but the effect of the sheath on the determination of the plasma density is not explained. In this presentation, for taking account of sheath effects on determination of plasma density from the cut-off peak, a simplified circuit modeling and an E/M simulation are conducted. The results show that occupation ratio of sheath volume between two tips of the cut-off probe and subsequence pressure condition mainly change position of the cut-off peak with respect to plasma frequency. Magnitude of relative voltage taken on the impedance of sheath and the impedance of bulk plasma can explain this effect. Furthermore, effects of gap size, tip radius, and tip length ware revealed based on above analysis.

  • PDF

Oxidative Etching of Imprinted Nanopatterns by Combination of Vacuum Annealing and Plasma Treatment

  • Park, Dae Keun;Kang, Aeyeon;Jeong, Mira;Lee, Jae-Jong;Yun, Wan Soo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.251.1-251.1
    • /
    • 2013
  • Combination of oxidative vacuum annealing and oxygen plasma treatment can serve as a simple and efficient method of line-width modification of imprinted nanopatterns. Since the vacuum annealing and oxygen plasma could lead mass loss of polymeric materials, either one of the process can yield a narrowed patterns. However, the vacuum annealing process usually demands quite high temperatures (${\geq}300^{\circ}C$) and extended annealing time to get appreciable line-width reduction. Although the plasma treatment may be considered as an effective low temperature rapid process for the line-width reduction, it is also suffering for the lowered controllability on application to very fine patterns. We have found that the vacuum annealing temperature can be lowered by introducing the oxygen in the vacuum process and that the combination of oxygen plasma treatment with the vacuum annealing could yield the best result in the line-with reduction of the imprinted polymeric nanopatterns. Well-defined line width reduction by more than 50% was successfully demonstrated at relatively low temperatures. Furthermore, it was verified that this process was applicable to the nanopatterns of different shapes and materials.

  • PDF

Behavior of Plasma-doped Graphene upon High Temperature Vacuum Annealing

  • Lee, Byeong-Joo;Jo, Sung-Il;Jeong, Goo-Hwan
    • Applied Science and Convergence Technology
    • /
    • 제27권5호
    • /
    • pp.100-104
    • /
    • 2018
  • Herein, we present the behavior of plasma-doped graphene upon high-temperature vacuum annealing. An ammonia plasma-treated graphene sample underwent vacuum annealing for 1 h at temperatures ranging from 100 to $500^{\circ}C$. According to Raman analysis, the structural healing of the plasma-treated sample is more pronounced at elevated annealing temperatures. The crystallite size of the plasma-treated sample increases from 13.87 to 29.15 nm after vacuum annealing. In addition, the doping level by plasma treatment reaches $2.2{\times}10^{12}cm^{-2}$ and maintains a value of $1.6{\times}10^{12}cm^{-2}$, even after annealing at $500^{\circ}C$, indicating high doping stability. A relatively large decrease in the pyrrolic bonding components is observed by X-ray photoelectron spectroscopy as compared to other configurations, such as pyridinic and amino bindings, after the annealing. This study indicates that high-vacuum annealing at elevated temperatures provides a method for the structural reorganization of plasma-treated graphene without a subsequent decrease in doping level.

KSTAR 토카막 진공용기 및 플라즈마 대향 부품의 탈기체 처리를 위한 가열 해석 (The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak)

  • 이강희;임기학;조승연;김종배;우호길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.247-254
    • /
    • 2000
  • The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, $10^{-6}{\sim}10^{-7}Pa$, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least $250^{\circ}C,\;350^{\circ}C$ respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  • PDF

ECR-PECVD 장치의 제작과 특성 (Manufacturing and characterization of ECR-PECVD system)

  • 손영호;정우철;정재인;박노길;황도원;김인수;배인호
    • 한국진공학회지
    • /
    • 제9권1호
    • /
    • pp.7-15
    • /
    • 2000
  • An ECR-PECVD system with the characteristics of high ionization rat다 ability of plasma processing in a wide pressure range and deposition at low temperature was manufactured and characterized for the deposition of thin films. The system consists of a vacuum chamber, sample stage, vacuum gauge, vacuum pump, gas injection part, vacuum sealing valve, ECR source and a control part. The control of system is carried out by the microprocessor and the ROM program. We have investigated the vacuum characteristics of ECR-PECVD system, and also have diagnosed the characteristics of ECR microwave plasma by using the Langmuir probe. From the data of system and plasma characterization, we could confirmed the stability of pressure in the vacuum chamber according to the variation of gas flow rate and the effect of ion bombardment by the negative DC self bias voltage. The plasma density was increased with the increase of gas flow rate and ECR power. On the other hand, it was decreased with the increase of horizontal radius and distance between ECR source and probe. The calculated plasma densities were in the range of 49.7\times10^{11}\sim3.7\times10^{12}\textrm{cm}^{-3}$. It is also expected that we can estimate the thickness uniformity of film fabricated by the ECR-PECVD system from the distribution of the plasma density.

  • PDF

서스펜션 진공 플라즈마 용사법을 통한 YSZ 코팅의 형성 (Formation of YSZ Coatings Deposited by Suspension Vacuum Plasma Spraying)

  • 유연우;변응선
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.460-464
    • /
    • 2017
  • As increasing thermal efficiency of the gas turbine, the performance improvement of thermal barrier coatings is also becoming important. Ytrria stabilized zirconia(YSZ) is the most popular materials for ceramic top coating because of its low thermal conductivity. In order to enhance the performance of thermal barrier coatings for hot sections in the gas turbine, suspension plasma spraying was developed in order to feed nano-sized powders. YSZ coatings formed by suspension plasma spraying showed better performance than YSZ coatings due to its exclusive microstructure. In this research, two YSZ coatings were deposited by suspension vacuum plasma spraying at 400 mbar and 250 mbar. Microstructures of YSZ coatings were analyzed by scanning electron image(SEM) on each spraying conditions, respectively. Crystalline structure transformation was not detected by X-ray diffraction. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings were measured by laser flash analysis. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings containing horizontally oriented nano-sized pores and vertical cracks showed $0.6-1.0W/m{\cdot}K$, similar to thermal conductivity of YSZ coatings formed by atmospheric plasma spraying.

Measurement of ion induced secondary electron emission $coefficient({\gamma})$ and work function of vacuum annealed MgO protective layer in AC PDP

  • Lim, J.Y.;Jeong, H.S.;Park, W.B.;Oh, J.S.;Jeong, J.M.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.799-801
    • /
    • 2003
  • The secondary electron emission $coefficient({\bullet})$ of vacuum annealed MgO films has been investigated by ${\bullet}$ -focused ion beam(${\bullet}$ -FIB) system. The vacuum annealed MgO films have been found to have higher ${\bullet}$ values than those for as-deposited MgO films for Ne+ ion. Also it is found that the ${\bullet}$ for air-hold of vacuum annealed MgO layers for 24-hours is similar to that for vacuum annealed MgO films without any air-hold.

  • PDF

Electron Density and Electron Temperature in Atmospheric Pressure Microplasma

  • Tran, T.H.;Kim, J.H.;Seong, D.J.;Jeong, J.R.;You, S.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.152-152
    • /
    • 2012
  • In this work we measured electron temperature and electron density of a microplasma by optical emission spectroscopy. The plasma is generated from a small discharge gap of a microwave parallel stripline resonator (MPSR) in Helium at atmospheric pressure. The microwave power supplied for this plasma source from 0.5 to 5 watts at a frequency close to 800 MHz. The electron temperature and electron density were estimated through Collisional-radiative model combined with Corona-equilibrium model. The results show that the electron density and temperature of this plasma in the case small discharge gap width are higher than that in larger gap width. The diagnostic techniques and associated challenges will be presented and discussed.

  • PDF

Power Dissipation in a RF Capacitively Coupled Plasma

  • Tran, T.H.;You, S.J.;Kim, J.H.;Seong, D.J.;Jeong, J.R.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.203-203
    • /
    • 2013
  • Low pressure plasmas play a key role in many areas including electronic, aerospace, automotive, biomedical, and toxic waste management industries, and the advantages of the plasma are well known the processing procedure is established. However, the insight behavior of the discharges remains a mystery, even though a simple geometry as capacitive discharges. In this work, we measured RF power dissipation in capacitively coupled plasma (CCP) at various experiment conditions with potential probe and RF current probe. Through the results, we will have a clearer view of the inner nature of the CCP.

  • PDF