• 제목/요약/키워드: Vacuum insulation

검색결과 149건 처리시간 0.029초

전도냉각 고온초전도 SMES 절연용 AlN의 전기적 및 기계적 특성 연구 (A Study on the Electrical and Mechanical Properties of AlN for Insulation of a Conduction-Cooled HTS SMES)

  • 최재형;곽동순;천현권;민치현;김해종;정순용;김상현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.957-958
    • /
    • 2007
  • The conduction-cooled HTS SMES magnet is operated in cryogenic temperature. The insulation design at cryogenic temperature is an important element that should be established to accomplish miniaturization that is a big advantage of HTS SMES. However, the behaviors of insulators for cryogenic conditions in air or vacuum are virtually unknown. Therefore, we need active research and development of insulation concerning application of the conduction-cooled HTS SMES. Specially, this paper was studied about high vacuum and cryogenic temperature breakdown and flashover discharge characteristics between cryocooler and magnet-coil. The breakdown and surface flashover discharge characteristics were experimented at cryogenic temperature and vacuum. Also, we were experimented about mechanical properties of 4-point bending test. From the results, we confirmed that about research between cryocooler and magnet-coil established basic data in the insulation design.

  • PDF

진공인터럽터의 내전압 성능 향상을 위한 전류컨디셔닝 기법 연구 (Study on Current Conditioning Process for Improving Withstand Voltage Performance of Vacuum Interrupter)

  • 차영광;이일회;전기범;장지훈;주흥진
    • 한국전기전자재료학회논문지
    • /
    • 제35권5호
    • /
    • pp.480-487
    • /
    • 2022
  • As a process to improve the insulation performance of VIs (Vacuum Interrupters), AC voltage conditioning is generally adopted by many manufacturers. Although the insulation performance is enhanced easily with AC Voltage conditioning, it has limitations when high recovery voltage is required due to high voltage rate or capacitive current switching. In particular, impurities such as oxides segregated on the electrode surface can be removed not by the energy level of the voltage conditioning but by the higher energy level achieved by the current conditioning process In this article, the current conditioning was carried out in various conditions and its validity was examined. The current conditioning was processed by changing the amplitude of applied current, arc time, the number of tests, and frequency. The insulation performance and the status of contact surface were checked as well. We concluded that as the applied charge quantity and the conditioning coverage area increase, the conditioning effect is much higher.

The Study on Thermal Performance Evaluation of Building Envelope with VIPs

  • Jeon, Wan-Pyo;Kwon, Gyeong-Jin;Kim, Jin-Hee;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: The energy consumption in buildings has continuously increased in some countries and it reaches almost 25% of the total energy use in korea. Therefore there are various efforts to minimize energy consumption in buildings, and the regulations on building envelope insulation have been tightened up gradually. To satisfy the building regulation, the use of vacuum insulation panels(VIPs) is increasing. VIP is a high performance insulation materials, so that it can be thinner than conventional insulation material. When VIP is applied in a building, it may cause thermal bridge, which occurs due to very low thermal conductivity compared to other building materials and the envelope of VIPs. Method: This study designed the capsulized VIPs using conventional insulation for reduction of the thermal bridge. Then designed VIPs were applied to a wall. The linear thermal transmittance and the effective thermal conductivity were analyzed by HEAT2 simulation program for two dimensional steady-state heat transfer. The result compared with a wall with non-capsulized VIPs. Result: It analyzed that the wall with capsulized VIPs had lower linear thermal transmittance and reduced the difference of the effective thermal transmittance with one dimensional thermal transmittance compared to that of the wall with non-capsulized VIPs.

건물에너지효율등급향상을 위한 고효율 건물외피 성능 연구 (Study on High Performance Building Envelope for raising Building Energy Rating)

  • 현종훈;홍성희;박효순;최무혁
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.801-806
    • /
    • 2008
  • The best plan is that the insulation performance should be improved because the insulation and airtight of building envelopes have an effect on the energy consumption basically. New insulation materials, which have the high performance and are above insulation standard, have been developed steadily. Because there are not studies on the building energy rating system and economic evaluation considering new insulation materials, these matters should be studied. In result alternatives, which applied 6 high performance material each, influence, reduce the annual heating energy and raise the building energy rating. Applying the vacuum insulation material(Case1,2) and vacuum or triple glazing can retrieves the investment with $120 and $$140{\sim}150$ per barrel each.

  • PDF

Insulation Characteristics for a Conduction-Cooled HTS SMES

  • Cheon H.G.;Baek S.M.;Seong K.C.;Kim H.J;Kim S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권2호
    • /
    • pp.39-43
    • /
    • 2005
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 77 K should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. Recently, research and development concerning application of the conduction-cooled HTS SMES that is easily movement are actively progressing in Korea. Electrical insulation under cryogenic temperature is a key and an important element in the application of this apparatus. However, the behaviors of insulators for cryogenic conditions in air or vacuum are virtually unknown. Therefore, this work focuses on the breakdown and flashover phenomenology of dielectrics exposed in vacuum for temperatures ranging from room temperature to cryogenic temperature. Firstly, we summary the insulation factors of the magnet for HTS SMES. And a surface flashover as well as volume breakdown in air and vacuum has been investigated with two kind insulators. Finally, we will discuss applications for the HTS SMES including aging studies on model coils exposed in vacuum at cryogenic temperature.

LNG 벙커링용 고효율 LNG 저장탱크 열해석 (Thermal analysis of LNG storage tank for LNG bunkering system)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권9호
    • /
    • pp.876-880
    • /
    • 2015
  • IMO의 규제인 신조 선박에 대한 NOx 80% 감축의 2016년 발효를 앞두고, 청정에너지인 LNG연료 선박 및 벙커링 선박의 보급이 유럽 선진국들을 중심으로 추진되고 있다. LNG 저장탱크는 LNG 벙커링의 필수 설비로 현재의 액체질소 등을 저장하는 극저온 액체 저장탱크와 동일한 구조이며, IMO의 "C"형 가압탱크인 내외 용기로 구성된 2중 탱크에 진공펄라이트 단열재가 충전되는 형식이다. 그러나 이 단열방식은 진공작업이 어렵고 일 LNG 기화량이 2.0 % 내외가 되어 보다 고효율의 탱크가 요구되어 진다. 본 연구에서는 진공과 단열재를 분리하여 내외탱크에 고진공을 적용하고 외부 탱크에 우레탄폼을 가설시킨 탱크 단열 방식을 새로이 고안하여 열해석을 수행하였다. 해석결과 본 개발 탱크는 진공도가 $10^{-3}Torr$ 이하일 때 일 기화량이 0.03 % 이하로 매우 적게 유지될 수 있고, $10^{-4}Torr$ 이하가 되면 일 기화량이 0.11 %가 되었다. 진공이 파괴되는 경우에도 현재 진공펄라이트 단열은 일 4.9 %의 증발이 발생하나, 새 고안 탱크는 일 증발율이 4.12 %가 되는 매우 효율이 높고 안전한 LNG 탱크 단열방식이 되었다.

진공 인터럽터의 쉴드 형상 최적설계 (Optimal Design of a Shield in Vacuum Interrupter)

  • 최승길;김규호
    • 한국전기전자재료학회논문지
    • /
    • 제20권4호
    • /
    • pp.374-380
    • /
    • 2007
  • In this paper a nobel optimum design method is presented for a shield in a vacuum interrupter which is equipped in switchgear to improve its electric insulation capability. The design of Taguchi experiment method which is based on the results by finite element method is used to find optimum design conditions. The important design factors are chosen at first and the concept of signal to noise ratio is applied to evaluate the vacuum interrupter performance, and the optimal values of each parameters are determined. From the results of various analyses, it is shown that the shield plate in circuit circuit breaker compartment of switchgear can reduce the concentration of electric field intensity. This method is very useful to design the construction of a shield in a short time. Consequently, the insulation capability of circuit breaker compartment in a gas insulated switchgear is improved by adopting an additional optimized shaped shield.

SOFC용 고온 적층 단열재의 해석적 고찰 (An Analysis Using Numerical Model of Composite Multi-Layer Insulation for SOFC)

  • 최종균;황승식;최규홍
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.540-548
    • /
    • 2019
  • This study was conducted to develop insulation for solid oxide fuel cell (SOFC). The developed insulation is based on the lamination technology and the radiation shielding technology of the satellite insulation. The insulation material is consisting of insulation material for conduction resistance, spacer, and radiation shielding material. The experimental apparatus consisting vacuum bell jar, pump, heater and temperature recording device has developed to verify the performance of the insulation. The experimental values were used as reference data for the modeling development. In this paper, heat transfer is assumed to be one- dimensional phenomena for the prediction of insulation performance and internal temperature distribution in high temperature region of SOFC. The developed model was used to compare the performance difference of insulation types according to composition materials. The analysis result shows that the insulation including spacer and radiation shielding has better heat insulation performance than other cases. In this study, the thickness reduction effect of about 20% was shown compared to the insulation including only conductive material. It is noted that the radiant shielding material should be carefully selected for durability, because SOFC insulation should be used for a long time at high temperature.

대용량 액체 수소 저장탱크를 위한 다층단열재의 단열성능 분석 (Adiabatic Performance of Layered Insulating Materials for Bulk LH2 Storage Tanks)

  • 김경호;신동환;김용찬;강상우
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.642-650
    • /
    • 2016
  • One of the most feasible solution for reducing the excessive energy consumption and carbon dioxide emission is usage of more efficient fuel such as hydrogen. As is well known, there are three viable technologies for storing hydrogen fuel: compressed gas, metal hydride absorption, and cryogenic liquid. In these technologies, the storage for liquid hydrogen has better energy density by weight than other storage methods. However, the cryogenic liquid storage has a significant disadvantage of boiling losses. That is, high performance of thermal insulation systems must be studied for reducing the boiling losses. This paper presents an experimental study on the effective thermal conductivities of the composite layered insulation with aerogel blankets($Cryogel^{(R)}$ Z and $Pyrogel^{(R)}$ XT-E) and Multi-layer insulation(MLI). The aerogel blankets are known as high porous materials and the good insulators within a soft vacuum range($10^{-3}{\sim}1$ Torr). Also, MLI is known as the best insulator within a high vacuum range(<$10^{-6}{\sim}10^{-3}$ Torr). A vertical axial cryogenic experimental apparatus was designed to investigate the thermal performance of the composite layered insulators under cryogenic conditions as well as consist of a cold mass tank, a heat absorber, annular vacuum space, and an insulators space. The composite insulators were laminated in the insulator space that height was 50 mm. In this study, the effective thermal conductivities of the materials were evaluated by measuring boil-off rate of liquid nitrogen and liquid argon in the cold mass tank.