• 제목/요약/키워드: Vacuum forming

검색결과 205건 처리시간 0.026초

시작 차량 감성 품질 개선에 관한 연구 (A Study on enhancement of emotional quality of prototype-car)

  • 최재원;양화준;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.358-361
    • /
    • 2000
  • To reduce the leadtime for a new model according to the strict market requirements, automobile manufacturer begins to utilize 3-dimensional CAD based techniques such as DMU(Digital Mock-Up). RP(Rapid Prototyping), VE(Virtual Engineering). But, not so many satisfactory utilities have been introduced to deal with the emotional properties such as embossment on the surface of interior parts and touch from material characteristics in virtual environment. It is required to manufacture prototype parts to verify actual feeling of the passengers in real automobile. This paper suggests a methodology to enhance emotional property via embedding embossment on the surface of prototype car interior trim without deterioration of dimensional accuracy using RIM(Reaction Injection Molding) and vacuum forming method.

  • PDF

초미립 숫돌에 의한 경면연삭 (Mirror Surface Grinding Using Ultrafine Grit Wheel)

  • 정해도
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.45-51
    • /
    • 1996
  • Silicon wafers are required to be finished under the roughness of nanometer order for the subsequent chip fabrication processes. Recently, the finish grinding techniques have been researched for the improvement of accuracy and surface roughness simultaneously. Among them, the grinding technique using fine abrasive has been known as an easily accessible method. However, the manufacture of the fine grit grinding wheel has been very difficult because of the coherence of the grits. In this paper, the development of the ultrafine grit silica($SiO_2$) grinding wheel by the combination of the binder coating and the vacuum forming techniques is reported. And, the mechanochemical removal effects of the grinding conditions are discussed. Finally, a successful result of Ra O.4nm. Rmax 4nm in the ground surface roughness of a 6 inch silicon wafer was achieved.

  • PDF

액중 방전 성형의 실험 장치 개발 및 실험적 연구 (Development of Electrohydraulic Forming Apparatus and Its Experimental Study)

  • 우민아;노학곤;송우진;강범수;김정
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.236-241
    • /
    • 2017
  • Electrohydraulic forming is a high-speed forming process that deforms a blank using electric discharge in liquid. When high voltage is discharged in the water, a shock wave is propagated from the tip of the electrodes to the blank, causing the blank to be deformed into the die. Electrohydraulic forming has many advantages including improved formability and reduced bouncing effect and springback. The objective of this paper was to conduct a feasibility study to identify the electrohydraulic effect. An electrohydraulic forming apparatus was developed and experiments were carried out. The results of the experiment showed that the developed apparatus had sufficient energy to deform the blank into the die. Using the hole to emit residual air in the die was more effective than using the vacuum pump in terms of saving on experiment time.

이온주입에 의한 진공성형 포장재의 전기전도 특성 (Electrical Conductivity Properties of the Vacuum Forming Packing Materials by Ion Implantation)

  • 이재형;이찬영;길재근
    • 한국전기전자재료학회논문지
    • /
    • 제16권11호
    • /
    • pp.1055-1061
    • /
    • 2003
  • A study has been made of surface modification of various organic materials by ion implantation to increase the surface electrical properties. The substrate used were PP(polypropylene), PET(polyethylene teraphthalate), ECOP(ethylene copolyester), PS(polystyrene). N$_2$, Ar ion implantation was performed at energies of 40 and 50keV with fluences from 5${\times}$ 10$\^$15/ to 7${\times}$10$\^$16/ ions/$\textrm{cm}^2$ with and without H$_2$O gas environment. Surface resistance decrease of implanted polymers was affected by ion implantation energy, ion species, atmosphere of chamber and kind of polymer. In result, surface conductivity of polymers irradiated with atmosphere gas H$_2$O was 10 times more higher than normal vacuum atmosphere, but after 90 hours, surface conductivity returned to the without H$_2$O gas atmosphere condition caused by aging effect. After vacuum forming, surface resistance value was changed to over 10$\^$16/$\Omega$/$\square$, because creation of surface cracks.

FEM을 이용한 진공유리 패널의 지지대 설계변수 설정 (The Pillar Design Variable Determination up of the Vacuum Glazing Panel using FEM)

  • 김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.101-106
    • /
    • 2011
  • There are various methods in the flat panel display manufacture. The cost reduction effect is very big in case of using the screen printing method. The screen printing method is much used in the process of forming PDP barrier and can apply to the process of arranging the pillars for maintaining the vacuum gap of the vacuum glazing panel. The pillar which is one of the core elements for comprising vacuum glazing maintains the vacuum gap overcoming the vacuum pressure difference with the atmospheric pressure generated in vacuum glazing. At the same time, the deformation phenomenon by vacuum pressure is relived. In this paper, by using FEM about three considered in the pillar design and arrangement kinds of limiting factors, the simulation was performed. The pillar optimum arrangement method at within the maximum allowable tensile stress and heat transfer coefficients according to the arrangement try to be presented based upon the analyzed result data review and this validity tries to be verified by FEM.

Graphene formation on 3C-SiC ultrathin film on Si substrates

  • Miyamoto, Yu;Handa, Hiroyuki;Fukidome, Hirokazu;Suemitsu, Maki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.9-10
    • /
    • 2010
  • Since the discovery of graphene by mechanical exfoliation from graphite[1], various fabrication methods are available today such as chemical exfoliation, epitaxial graphene on SiC substrates, etc. In view of industrialization, the mechanical exfoliation method may not be an option. Epitaxial graphene on SiC substrates, in this respect, is by far more practical because the method consists of conventional thermal treatments familiar to semiconductor industry. Still, the use of the SiC substrate itself, and hence the incompatibility with the Si technology, lessens the importance of this technology in its future industrialization. In this context, we have tackled the problem of forming graphene on Si substrates (GOS). Our strategy is to form an ultrathin (~80 nm) SiC layer on top of a Si substrate, and to graphitize the top SiC layers by a vacuum annealing. We have actually succeeded in forming the GOS structure [2,3,4]. Raman-scattering microscopy indicates presence of few-layer graphene (FLG) formed on our annealed SiC/Si heterostructure, with the G ($1580\;cm^{-1}$) and the G'($2700\;cm^{-1}$) bands, both related to ideal graphene, clearly observed. Presence of the D ($1350\;cm^{-1}$) band indicates presence of defects in our GOS films, whose elimination remains as a challenge in the future. To obtain qualified graphene films on Si substrate, formation of qualified SiC films is crucial in the first place, and is achieved by tuning the growth parameters into a process window[5]. With a potential for forming graphene films on large-scale Si wafers, GOS is a powerful candidate as a key technology in bringing graphene into silicon technology.

  • PDF

롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구 (A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process)

  • 정문수;김세환;이춘규
    • Design & Manufacturing
    • /
    • 제10권2호
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.

고해처리와 미세분 함량에 따른 BKP의 탈수특성변화 (Effect of Beating Time and Fines Content on the Drainage Properties of BKP)

  • 성용주;이학래
    • 펄프종이기술
    • /
    • 제31권1호
    • /
    • pp.52-60
    • /
    • 1999
  • Drainage rate in wet-end, which has significant influences on the production capacity, product quality and process economics in papermaking, becomes an important factor in the modern high speed papermaking processes owing to increased level of fines contained in today's pulp materials and increased papermaking system closure. A study was carred out to investigate the influence of beating and fines content on natural and vacuum dewatering using a vacuum drainage tester. Increase in beating and accumulation of fines in the stock decreased natural dewatering, Vacuum dewatering effect, however, increased substantially as beating and fines content were increased. But this increase in vacuum dewatering decreased again when a stock is severely beaten or fines content is greater than 35%. Above this level of fines content, mobile fines migrates to the interstices of the forming web to cause sealing or plugging which restrict fluid movement through the web.

  • PDF

O2 플라즈마 표면처리에 의한 Bio-FET 소자의 특성 열화 및 후속 열처리에 의한 특성 개선 (Degradation of electrical characteristics in Bio-FET devices by O2 plasma surface treatment and improving by heat treatment)

  • 오세만;정명호;조원주
    • 한국진공학회지
    • /
    • 제17권3호
    • /
    • pp.199-203
    • /
    • 2008
  • $O_2$ 플라즈마를 이용한 표면처리 공정이 Bio-FET (biologically sensitive field-effect transistor)에 미치는 영향을 조사하기 위하여, SOI (Silicon-on-Insulator) wafer와 sSOI (strained- Si-on-Insulator) wafer를 이용하여 pseudo-MOSFET을 제작하고 $O_2$ 플라즈마를 이용하여 표면처리를 진행하였다. 제작된 시료들은 back gated metal contact junction 방식으로 측정되었다. $I_D-V_G$ 특성과 field effect mobility 특성의 관찰을 통하여 $O_2$ 플라즈마 표면처리에 따른 각 시료들의 전기적 특성 변화에 대하여 관찰하였다. 그리고 $O_2$ 플라즈마 표면처리 과정에서 플라즈마에 의한 손상을 받은 시료들은 2% 수소희석가스 ($H_2/N_2$)를 이용한 후속 열처리 공정을 진행한 후 전기적 특성이 향상되는 것을 관찰할 수 있었다. 이는 수소희석가스를 이용한 후속 열처리 공정을 통하여 산화막과 Si 사이의 계면 준위와 산화막 내부의 전하 포획 준위를 감소시켰기 때문이다.

가압-진공 하이브리드 주입 성형에 의한 알루미나의 성형에 미치는 다단 가압의 영향 (Effect of Step Pressure on Shape Forming of Alumina by Pressure-Vacuum Hybrid Slip Casting)

  • 조경식;이현권;우병준
    • 한국세라믹학회지
    • /
    • 제50권2호
    • /
    • pp.142-148
    • /
    • 2013
  • Conventional cold isostatic pressing, slip casting, and filter pressing are not completely suitable for fabricating large plates because of disadvantages such as the high cost of equipment and formation of density gradient. These problems could be avoided by employing pressure-vacuum hybrid slip casting (PVHSC). In the PVHSC, the consolidation occurs not only by the compression of the slip in casting room, but also by vacuum sucking of the dispersion medium around the mold. We prepared the alumina bodies by the PVHSC in a static- or stepwise-pressure manner for loading up to 0.5 MPa using an aqueous slip. The green bodies were dried at $30^{\circ}C$ with 40 ~ 80% relative humidity. Under static pressure, casting induced a density gradient in the formed body, resulting in cracking and distortion after the firing. However, the stepwise pressure loading resulted in green bodies with homogeneous density, and the minimization of the appearance of those defects in final products. Desirable drying results were obtained from the cast bodies dried with 80% RH environment humidity. When sintered at $1650^{\circ}C$ for 4 h, the alumina plate made by stepwise-pressure casting reached full density (> 99.7% relative density).