• Title/Summary/Keyword: Vacuum condition

Search Result 921, Processing Time 0.028 seconds

Electrical Properties of Metal-Oxide Quantum dot Hybrid Resistance Memory after 0.2-MeV-electron Beam Irradiation

  • Lee, Dong Uk;Kim, Dongwook;Kim, Eun Kyu;Pak, Hyung Dal;Lee, Byung Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.311-311
    • /
    • 2013
  • The resistance switching memory devices have several advantages to take breakthrough for the limitation of operation speed, retention, and device scale. Especially, the metal-oxide materials such as ZnO are able to fabricate on the flexible and visible transparent plastic substrate. Also, the quantum dots (QDs) embedded in dielectric layer could be improve the ratio between the low and the high resistance becauseof their Coulomb blockade, carrier trap and induced filament path formation. In this study, we irradiated 0.2-MeV-electron beam on the ZnO/QDs/ZnO structure to control the defect and oxygen vacancy of ZnO layer. The metal-oxide QDs embedded in ZnO layer on Pt/glass substrate were fabricated for a memory device and evaluated electrical properties after 0.2-MeV-electron beam irradiations. To formation bottom electrode, the Pt layer (200 nm) was deposited on the glass substrate by direct current sputter. The ZnO layer (100 nm) was deposited by ultra-high vacuum radio frequency sputter at base pressure $1{\times}10^{-10}$ Torr. And then, the metal-oxide QDs on the ZnO layer were created by thermal annealing. Finally, the ZnO layer (100 nm) also was deposited by ultra-high vacuum sputter. Before the formation top electrode, 0.2 MeV liner accelerated electron beams with flux of $1{\times}10^{13}$ and $10^{14}$ electrons/$cm^2$ were irradiated. We will discuss the electrical properties and the physical relationships among the irradiation condition, the dislocation density and mechanism of resistive switching in the hybrid memory device.

  • PDF

Numerical Study on the Internal Flow in the Cyclone Vacuum Cleaner (사이클론 청소기 내부 유동에 관한 수치해석적 연구)

  • Lee, Chanhyun;Chang, Hyuksang
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.283-289
    • /
    • 2014
  • General household vacuum cleaners consist of dust collector, pre filter, motor and exhaust filter, and the filtered clean air is discharged to the atmosphere. By using the CFD methods, we estimated the internal flow in two types of commercial cyclone vacuum cleaners to evaluate the dust collection performance. From the analysis, it was known that the number of revolution had higher values in cyclone cone region. CFD analysis in a specific showed non-uniform velocity distribution at outlet, which results in the deterioration of particle collection performance. In order to improve flow condition, the installation of baffle was proposed and the values of velocity RMS were estimated.

The Measurement of Vacuum Pressure for the Multi-Stage Rotors of Disk-Type Molecular Drag Pump (원판형 분자 드래그펌프 다단 회전자에 대한 압력분포 측정)

  • Kwon, Myoung-Keun;Hwang, Young-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.272-280
    • /
    • 2009
  • In this study is performed to investigate the pumping characteristics of three-stage disk-type molecular drag pump (DTDP). The experiments are measured using five vacuum pressure gauges in the positions for rotors of DTDP. The experimented DTDP is consisted of three rotors and four stator. In the DTDP, spiral channels of three rotors are cut on the both upper surface and lower surface of a rotating disk, and corresponding stator is a planar disk. The experiments are performed in the outlet pressure range of $0.2{\sim}533\;Pa$. The pressure of each rotors are measured under the various condition of outlet pressure and throughputs, and nitrogen gas is used for test gas. In the numerical study, the pumping characteristics of each rotor are studied for the variation of throughputs in the all rotating channel. Pressure contour and velocity are obtained by the numerical simulation.

Vacuum Freeze Drying of Skim Milk Solution in a Cylindrical Container: Comparison of Experimental and Numerical Results (원통형 용기에 담긴 탈지분유 용액의 진공동결건초 : 실험결과와 해석결과의 비교연구)

  • Song, Chi-Seong;Nam, Jin-Hyeon;Kim, Chan-Jung;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.288-301
    • /
    • 2002
  • A vacuum freeze drying experiment of skim milk solution in a cylindrical container is conducted to investigate the multi-dimensional drying characteristics of the process during the primary drying stage. Temperature histories at several positions are measured under the same process condition that is carefully controlled. Then the measured temperature histories at different positions are combined to produce instantaneous temperature distribution fields inside the cylindrical container. Along with the temperature measurement, the mass reduction history of the skim milk solution is also measured. From the measured temperature distribution curved configurations of sublimation interfaces and 2-dimensional heat transfer is inferred. The freeze drying under the present experimental setup is simulated with a calculation program that is based on a finite volume method with a moving grid system. Good agreements between the numerical and experimental results are observed. The present experimental results and the numerical approaches can be useful information in developing the analysis tools for practical vacuum freeze drying processes.

Corrosion Behavior of Dental Alloys Cast by Various Casting Methods (치과용 주조합금의 주조방법에 따른 부식거동)

  • Choe Han-Cheol;Ko Yeong-Mu
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.296-300
    • /
    • 2004
  • The defects of partial denture frameworks are mainly shrinkage porosity, inclusions, micro-crack, particles from investment, and dendritic structure. In order to investigate a good casting condition of partial denture frameworks, the three casting alloys and casting methods were used and detected casting defects were analyzed by using electrochemical methods. Three casting alloys (63Co-27Cr-5.5Mo, 63Ni-16Cr, 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting (Kerr, USA), high frequency induction casting (Jelenko Eagle, USA), vacuum pressure casting (Bego, Germany). The casting temperature was $1,380^{\circ}C$ (63Co-27Cr-5.5Mo and 63Ni-16Cr) and $1,420^{\circ}C$ (63Co-30Cr-5Mo). The casting morphologies were analyzed using FE-SEM and EDX. The corrosion test of the dendritic structure was performed through potentiodynamic method in 0.9% NaCl solutions at $36.5^{\circ}C$ and corrosion surface was observed using SEM. The defects of partial denture frameworks improved in the order of centrifugal casting, high frequency induction casting, and vacuum pressure casting method, especially, pore defects were found at part of clasp in the case of centrifugal casting method. The structure of casting showed dendritic structure for three casting alloys. In the 63Co-27Cr-5.5Mo and 63Co-30Cr-5Mo, $\alpha$-Co and $\varepsilon$-Co phases were identified at matrix and $${\gamma}$-Ni_2$Cr second phase were shown in 63Ni-16Cr. Also, the corrosion resistance of cast structure increased in the order of vacuum pressure casting, high frequency induction casting, and centrifugal casting method.

Study on Temperature-Dependent Mechanical Properties of Chloroprene Rubber for Finite Element Analysis of Rubber Seal in an Automatic Mooring System (자동계류시스템 고무 씰 유한요소해석을 위한 고무 소재의 온도별 기계적 특성 연구)

  • Son, Yeonhong;Kim, Myung-Sung;Jang, Hwasup;Kim, Songkil;Kim, Yongjin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.157-163
    • /
    • 2022
  • An automatic mooring system for a ship consists of a vacuum suction pad and a mechanical part, enabling quick and safe mooring of a ship. In the development of a mooring system, the design of a vacuum suction pad is a key to secure enough mooring forces and achieve stable operation of a mooring system. In the vacuum suction pad, properly designing its rubber seal determines the performance of the suction pad. Therefore, it is necessary to appropriately design the rubber seal for maintaining a high-vacuum condition inside the pad as well as achieving its mechanical robustness for long-time use. Finite element analysis for the design of the rubber seal requires the use of an appropriate strain energy function model to accurately simulate mechanical behavior of the rubber seal material. In this study, we conducted simple uniaxial tensile testing of Chloroprene Rubber (CR) to explore the strain energy function model best-fitted to its experimentally measured engineering strain-stress curves depending on various temperature environments. This study elucidates the temperature-dependent mechanical behaviors of CR and will be foundational to design rubber seal for an automatic mooring system under various temperature conditions.

Development of Experimental Device for Analysis of Hydraulic Oil Characteristics with Dielectric Constant Sensors (유전상수 센서를 이용한 유압 작동유의 분석을 위한 실험장비 개발)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.41-47
    • /
    • 2021
  • An experimental device was developed for analysis of hydraulic oil characteristics with dielectric constant sensors. Online analysis is the most effective method of the three methods used for analyzing lubricant oils. This is because it can monitor the machine condition effectively using oil sensors in real time without requiring excellent analysis skill and eliminates human errors. Determining the oil quality usually requires complex laboratory equipment for measuring factors such as density, viscosity, base number, acid number, water content, additive, and wear debris. However, the electric constant is another indicator of oil quality that can be measured on-site. The electric constant is the ratio of the capacitance of a capacitor using that material as a dielectric, compared with a similar capacitor that has a vacuum as its dielectric. The electric constant affects the factors such as the base oil, additive, temperature, electric field frequency, water content, and contaminants. In this study, the tendency of the electric constant is investigated with a variation of temperature, water content, and dust weight. The experimental device can control working temperature and mix the contaminants with oil. A machine condition monitoring program developed to analyze hydraulic oil is described. This program provides graph and digital values with variation of time. Moreover, it includes an alarm system for when the oil condition is bad.

Numerical Modeling of Floating Electrodes in a Plasma Processing System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.102-110
    • /
    • 2015
  • Fluid model based numerical analysis is done to simulate a plasma processing system with electrodes at floating potential. $V_f$ is a function of electron temperature, electron mass and ion mass. Commercial plasma fluid simulation softwares do not provide options for floating electrode boundary value condition. We developed a user subroutine in CFD-ACE+ and compared four different cases: grounded, dielectric, zero normal electric field and floating electric potential for a 2D-CCP (capacitively coupled plasma) with a ring electrode.

Electrical Properties of Carbon Fiber/Aluminum Composite (Carbon Fiber/ Aluminum 복합재료의 전기적 특성연구)

  • Han, Se-Won;Kim, Bong-Seo;Woo, Byung-Chu;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.259-262
    • /
    • 1991
  • Carbon fiber/Aluminum composites were fabricated vacuum hot press method with condition of $10^{-3}$ torr, 100MPa, $600^{\circ}C$, 30min. Microstructure, mechanical properties, electrical properties and thermal properties of CF/Al composites were studied.

  • PDF

Analysis of Plasma Treatment Effects on a Compliant Substrate for High Conductive, Stretchable Ag Nanowires

  • Jeong, Jonghyun;Jeong, Jaewook
    • Applied Science and Convergence Technology
    • /
    • v.27 no.1
    • /
    • pp.5-8
    • /
    • 2018
  • In this paper, plasma treatment effects on a ploy(dimethyl siloxane) substrate were analyzed for the applications of stretchable silver nanowire (Ag NWs) electrodes. The oxygen plasma treated sample shows the best performance compared to nitrogen treated and untreated samples. The lowest sheet resistance and reasonable stretching capability was achieved up to 20% strain condition without open circuit fail for the oxygen plasma treated sample.