• 제목/요약/키워드: Vacuum calculation

검색결과 158건 처리시간 0.026초

Design Study of LAR Tokamak Reactor with a Self-consistent System Analysis Code

  • Hong, B.G.;Lee, D.W.;Kim, S.K.;Kim, D.H.;Lee, Y.O.;Hwang, Y.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.314-314
    • /
    • 2010
  • The design of the blanket and shield play a key role in determining the size of a reactor since it has an impact on the various reactor components. The blanket should produce enough tritium for tritium self-sufficiency and the shield should provide sufficient protection for the superconducting TF coil. Neutronic optimization of the blanket and the shield is necessary, and we coupled the system analysis with a neutronic calculation to account for the interrelation of the blanket and shield with the plasma performance of a reactor system in a self-consistent manner. By using the coupled system analysis code, the operational space for a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil is investigated with an spect ratio in the range of 1.5 - 2.5. The minimum major radius which satisfies all the physics and engineering requirements increases with the magnetic field at the magnetic axis. A required inboard shield thickness is mainly determined by the requirement on the protection of the TF coil against radiation damage. It is shown that to have a fusion power bigger than 3,000 MW in the LAR tokamak with a superconducting TF coil, a major radius bigger than 4.0 m is required.

  • PDF

The structures and catalytic activities of metallic nanoparticles on mixed oxide

  • 박준범
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.339-339
    • /
    • 2010
  • The metallic nanoparticles (Pt, Au, Ag. Cu, etc.) supported on ceria-titania mixed oxide exhibit a high catalytic activity for the water gas shift reaction ($H_2O\;+\;CO\;{\leftrightarrow}\;H_2\;+\;CO_2$) and the CO oxidation ($O_2\;+\;2CO\;{\leftrightarrow}\;2CO_2$). It has been speculated that the high catalytic activity is related to the easy exchange of the oxidation states of ceria ($Ce^{3+}$ and $Ce^{4+}$) on titania, but very little is known about the ceria titanium interaction, the growth mode of metal on ceria titania complex, and the reaction mechanism. In this work, the growth of $CeO_x$ and Au/$CeO_x$ on rutile $TiO_2$(110) have been investigated by Scanning Tunneling Microscopy (STM), Photoelectron Spectroscopy (PES), and DFT calculation. In the $CeO_x/TiO_2$(110) systems, the titania substrate imposes on the ceria nanoparticles non-typical coordination modes, favoring a $Ce^{3+}$ oxidation state and enhancing their chemical activity. The deposition of metal on a $CeO_x/TiO_2$(110) substrate generates much smaller nanoparticles with an extremely high activity. We proposed a mechanism that there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface.

  • PDF

Local Electronic Structures of Graphene Probed by Scanning Tunneling Spectroscopy

  • Jang, Won-Jun;Lee, Eui-Sup;Kim, Howon;Yoon, JongKeon;Chang, Yunhee;Kim, Yong-Hyun;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.132.2-132.2
    • /
    • 2013
  • Electrons in graphene make ballistic transport with very high mobility (${\sim}2{\times}105 $cm2V-1s-1), which holds promises for applications in fast electronic devices. However, such expectations have been hampered by the semi-metallicity or zero bandgap of graphene, which makes it impossible to completely turn off graphene transistor devices. Here, we report the observations of local bandgap modulations in Moir$\acute{e}$ patterned graphene on metal substrates using scanning tunneling microscopy and spectroscopy. The Moir$\acute{e}$ patterned graphene was made by combinations of self-assembly processes, and they showed additional electronic states that could be interpreted as sub-band states. Our experimental observations could be explained with orbital transitions of carbon atoms from sp2 to sp3, as supported by our density functional theory calculation results. Our findings will add new poweful components for device applications.

  • PDF

Electronic Structure of Ce-doped ZrO2 Film: Study of DFT Calculation and Photoelectron Spectroscopy

  • Jeong, Kwang Sik;Song, Jinho;Lim, Donghyuck;Kim, Hyungsub;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • 제25권1호
    • /
    • pp.19-24
    • /
    • 2016
  • In this study, we evaluated the change of electronic structure during redox process in cerium-doped $ZrO_2$ grown by sol gel method. By sol-gel method, we could obtain cerium-doped $ZrO_2$ in high oxygen partial pressure and low temperature. After post annealing process in nitrogen ambient, the film is deoxidized. We used spectroscopic and theoretical methods to analysis change of electronic structure. X-ray absorption spectroscopy (XAS) for O K1-edge and Density Functional Theory (DFT) calculation using VASP code were performed to verify the electronic structure of the film. Also, high resolution x-ray photoelectron spectroscopy (HRXPS) for Ce 3d was carried out to confirm chemical bond of cerium doped $ZrO_2$. Through the investigation of the electronic structure, we verified as followings. (1) During reduction process, binding energy of oxygen is increase. Simultaneously, oxidation state of cerium was change to 4+ to 3+. (2) Cerium 4+ and cerium 3+ states were generated at different energy level. (3) Absorption states in O K edge were mainly originated by Ce 4+ $f_0$ and Ce 3+, while occupied states in valance band were mainly originated from Ce 4+ $f_2$.

복제 방지용 PUF의 전자계 해석 방안 (Consideration of EM Analysis for Unclonnable PUF)

  • 김태용;이훈재
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.80-82
    • /
    • 2012
  • 본 논문에서는 Debye 분산 특성을 가지는 복제 방지용 PUF를 설계하기 위한 전자계 해석 방안을 고려하였다. 공기층과 분산매질(Si)로 구성된 1차원 모델 내에 전파하는 펄스를 모형하기 위해 FDTD법을 이용하였다. 불연속 경계면에 도달한 펄스는 일부 반사되고 일부는 투과되어 빠르게 감쇠되는 것으로 나타났다. 그 결과 FDTD법에 의한 Debye 분산특성을 가지는 1차원 복제방지용 PUF 설계 및 모델링에 적용 가능한 것을 확인하였다.

  • PDF

반도체 표면처리공정용 대면적 히터 플레이트의 열전달 특성에 관한 연구 (A Study on the Heat Transfer Characteristics of the Large Dimension Heater Plate for a Semiconductor Process)

  • 이윤용;강환국;문석환
    • 한국표면공학회지
    • /
    • 제43권6호
    • /
    • pp.309-314
    • /
    • 2010
  • The numerical study for the effect of various factors that affect the temperature distribution of the process glass installed above the large rectangular heater plate was carried out. For the calculation, heat flux, distance between heat source and process glass plate, effect of vacuum condition and convection in a chamber were considered as important factors. The results showed that the temperature gradient on the glass was increased at the natural convection because of the buoyancy force increases due to the heated air. Also, the more heat flux and distance between the heater plate and glass increases, the more increasing the temperature gradient was. In the case of isothermal heating wall, the temperature variation was smaller than the uniform heat flux condition.

복제 방지용 PUF 모델링을 위한 전자계 해석 (Electromagnetic Analysis to Design Unclonable PUF Modeling)

  • 김태용;이훈재
    • 한국정보통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1141-1147
    • /
    • 2012
  • 본 논문에서는 Debye 분산 특성을 가지는 복제 방지용 PUF를 설계하기 위한 전자계 해석 방안을 고려하였다. 공기층과 유전체 기판 위에 형성된 분산매질(Si)로 구성된 1차원 모델 내에 전파하는 펄스를 모형하기 위해 FDTD법을 이용하였다. 불연속 경계면에 도달한 펄스는 일부 반사되고 일부는 투과되어 빠르게 감쇠되는 것으로 나타났다. 그 결과 FDTD법에 의한 유전체 기판을 고려한 Debye 분산특성을 가지는 1차원 복제방지용 PUF 모델링에 적용 가능한 것을 확인하였다.

액정디스플레이 후판광원용 평판형 수은 형광램프의 2차원 시뮬레이션 연구 (Two-Dimensional Simulation of Hg Flat Fluorescent Lamps for an LCD Backlight unit)

  • 윤현진;이해준
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1275-1281
    • /
    • 2007
  • The discharge phenomena in a flat fluorescent lamp for the backlight unit of liquid crystal displays are simulated by sung a two-dimensional fluid model. The numerical methods for the calculation of plasma dynamics and the radiation transport are introduced for the discharge simulation and for the transmission of the vacuum ultraviolet lights. The simulation results are presented to compare the luminance and the luminance efficacy with the variation of gas pressure, gas mixture ratio, driving voltage, and frequency.

Calculation of Field Enhancement Factor in CNT-Cathodes Dependence on Dielectric Constant of Bonding Materials

  • Kim, Tae-Sik;Shin, Heo-Young;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1092-1095
    • /
    • 2005
  • The effect of the dielectric constant (${\varepsilon}$) of bonding materials in screen-printed carbon nanotube cathode on field enhancement factor was investigated using the ANSYS software for high-efficient CNT-cathodes. The field enhancement factor increased with decreasing the dielectric constant and reaching a maximum value when the dielectric constant is 1, the value for a vacuum. This indicates that the best bonding materials for screen-printing CNT cathodes should have a low dielectric constant and this can be used as criteria for selecting bonding materials for use in CNT pastes for high-efficient CNT-cathodes

  • PDF

HTS 케이블 냉각용 역브레이튼 사이클 극저온 냉동기 설계에 관한 연구 (Design of Reverse Brayton Cycle Cryocooler System for HTS Cable Cooling)

  • 박재홍;권용하;김영수;박성출
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.58-65
    • /
    • 2003
  • The high temperature superconductivity(HTS) cable must be cooled below the nitrogen liquefaction temperature to applicate the cable in power generation and transmi-ssion system under the superconducting state. To obtain superconducting state. a reliable cryocooler system is required. Structural and thermal design have been performed to design cryocooler system operated with reverse Brayton cycle using gas neon as refrigerant. This cryocooler system consists of compressor. recuperator. coldbox. control valves and has 1 kW cooling capacity. Heat loss calculation was conducted for the given cryocooler system by considering the conduction and radiation through the multi-layer insulation(MLI) and high vacuum. The results can be summarized as: conduction heat loss is 7 W in valves and access port and radiation heat loss is 18 W through the surface of cryocooler. The full design specifications were discussed and the results were applied to construct in house HTS cable cooling system.