• Title/Summary/Keyword: Vacuum Technology

Search Result 3,258, Processing Time 0.038 seconds

Vacuum Technology for EUV Lithography (EUV Lithography를 위한 진공 기술)

  • Joo, Jang Hun
    • Vacuum Magazine
    • /
    • v.1 no.3
    • /
    • pp.14-20
    • /
    • 2014
  • Lithography is widely recognized as one of the key steps in the manufacture of ICs and other devices and/or structures. However, as the dimensions of features made using lithography become smaller, lithography is becoming a more critical factor for enabling miniature IC or other devices and/or structures to be manufactured. As explained above, to make it happen, many other important technologies will have to be addressed. The vacuum technology is one of them and the engineers and experts are paying attention on vacuum technology including vacuum pumps. Especially high Vacuum(HV) and Ultra high vacuum(UHV) are not easy and not simple one. So the manpower who can understand vacuum technology with long experience in vacuum industry is important with basic study.

International Standards Activities for ISO/TC 112 Vacuum Technology (ISO/TC 112 Vacuum Technology 국제표준 활동)

  • Hong, S.S.;Shin, Y.H.;Kim, J.T.;Chung, K.H.;Choi, H.K.;Kim, I.S.;Park, W.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.397-404
    • /
    • 2007
  • International Standardization for Vacuum pumps, vacuum instruments, and vacuum components has been established at ISO/TC 112 which is a technical committee of ISO (International Organization for Standardization) in the area of vacuum technology. This report shortly summarizes the structure of ISO/TC 112 and its activities on the standardization for vacuum technology. Also it introduces the brief contents of "specifications for hot cathode ionization gauges" and"Test procedure for vacuum valves" which are recently accepted as new proposals. These information on ISO/TC 112 would contribute to activate the development of vacuum technology as well as the participation for the international standardization in Korea.

Vacuum Cooling System and Their Use (진공냉각장치와 그 이용)

  • 김명환;김경근;박형진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.7-16
    • /
    • 1995
  • This article describes the working prnciple, structure and main characteristics of vacuum coolers for vegetables, and gives concrete examples of vacuum coolers that srebeing put to practical use. In particular, newly-developed cavuum coolers with cold storage, utilizing night-time electricity, are focused upon. Processing plants for vegetables, cold-storage rooms and vacuum cooling devices were investigated as possible application of vacuum cooling technology.

  • PDF

The Vacuum In-Line Sealing Process for High Efficiency PDP (고효율 PDP 제작을 위한 진공 인라인 실장 공정)

  • Kwon, Sang-Jik;Jang, ChAn-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.23-27
    • /
    • 2005
  • The effects of the base vacuum level on a plasma display panel (PDP) produced by the vacuum in-line sealing technology were investigated. The main equipment of the vacuum in-line sealing process consists of the sealing chamber, pumping systems for evacuating, mass flow controller for introducing the plasma gases, and other measuring systems. During the sealing process, the impurity gases were fully evacuated and the panel was prevented from the adsorption of impurity gases. As a result, the brightness increased as the impurity gas density decreased, so we found that the vacuum in-line sealing process was more efficient technology an the conventional sealing process.

  • PDF

Technology Trends in Vacuum Pumping

  • Ormrod, Stephen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.59-59
    • /
    • 2012
  • Vacuum pumping remains central to the performance and economy of many manufacturing processes, scientific instruments and scientific research. More vacuum is being used in many of the latest or leading edge manufacturing processes: Current examples include 3D semiconductor devices, EUV lithography, 450 mm silicon wafers, AMOLED displays, LEDs, Lithium-ion batteries and steel degassing. In other applications, vacuum pumping technology developments have led to much lower product costs which for example have enabled mass spectrometers to become a ubiquitous tool is life science research. Vacuum pumps have continuously evolved during the past 100 years of vacuum-based industrial processing but remain a key component which is often on the critical path of process and product improvements. This is especially so in the growing number of applications where the pumps are highly stressed. This presentation outlines significant developments in vacuum that have brought about this progress. The likely course of continued improvements is discussed in terms of increased performance and reliability, robust by-product handling, better cost efficiency and reduced environmental impact especially power consumption.

  • PDF

Simulation of outgassing effects of vacuum materials on vacuum characteristics

  • Kim, Hyung-Taek;Kim, Young-Suk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for these vacuum systems were suggested based on the simulation results. The baking-out effects of the modeled systems and materials on the performance of the vacuum system were also analyzed. The simulation predicted that the overall outgassing effect was more significant in the TMP system than in the DP system and that the utilization of a booster pump has a greater effect on the evacuation time than on the ultimate pressure.

  • PDF