• Title/Summary/Keyword: Vacuum Glass

Search Result 758, Processing Time 0.028 seconds

CIGS Thin Film Fabrication Using Spray Deposition Technique (스프레이 분무법을 이용한 CIGS 태양전지 박막의 합성)

  • Cho, Jung-Min;Bae, Eun-Jin;Suh, Jeong-Dae;Song, Ki-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.250-250
    • /
    • 2010
  • We have prepared CIGS thin film absorber layers with simple solution spray deposition technique and thin film were synthesized with different atomic ratio. CIGS thin films were synthesized using non-vacuum solution deposition method on pre-heated sodalime glass substrates and Mo-coated soadlime glass substrate. In precursor solution were Cu : In : Ga: S ratio 4 : 3 : 2 : 8 and the crystal type of sprayed thin film were CIGS chalcopyrite structures. This structure was identified as typical chalcopyrite tetragonal structure with XRD analysis. This result showed that CIGS solution deposition technique has potential for the one step synthesis and low cost fabrication process for CIS or CIGS thin film absorber layer.

  • PDF

AsGeSeS 박막의 광학적 조건에 따른 저항변화 특성에 대한 연구

  • Nam, Gi-Hyeon;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.248-248
    • /
    • 2010
  • We have demonstrated new functionalities of Ag-doped chalcogenide glasses based on their capabilities as solid electrolytes. The influence of silver on the properties of the newly formed materials is regarded in terms of diffusion kinetics, and Ag saturation is related to the composition of the hosting material. Silver saturated in chalcogenide glass has been used in the formation of solid electrolyte, which is the active medium in the programmable metallization cell (PMC) device. In this paper, we investigated the optical properties of Ag-doped chalcogenide thin film by He-Ne laser beam exposure, which is concerned with the Ag-doping effect of PMCs before or after annealing. Chalcogenide bulk glass was fabricated by a conventional melt quenching technique. Amorphous chalcogenide and Ag thin films were prepared by e-beam evaporation at a deposition rate of about $4\;{\AA}/sec$. As a result of resistance change with laser beam exposure, the resistance abruptly dropped from the initial value of $1.4\;M{\Omega}$ to the saturated value of $400\;{\Omega}$.

  • PDF

Structural and Optical Evolution of Ga2O3/Glass Thin Films Deposited by Radio Frequency Magnetron Sputtering

  • Choe, Gwang-Hyeon;Seo, Chang-Su;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.350.2-350.2
    • /
    • 2014
  • We investigated the structural and optical evolution of Ga2O3 thin films on glass substrates deposited using radio frequency magnetron sputtering. Initially, amorphous Ga2O3 thin film is grown, and then, surface humps and nanowire (NW) bundles are gradually formed as the film thickness increases. The surface humps are Ga-rich and provide nucleation sites for NWs through a self-catalytic vapor-liquid-solid mechanism with self-assembled Ga droplets. Both the surface humps and the NWs induce variation of the optical properties such as the optical bandgap and refractive index by absorbing light in the ultraviolet region.

  • PDF

A study on the AIN thin films fabricated by RF magnetron sputtering (RF Magnetron Sputtering 법으로 제조된 AIN 박막에 관한 연구)

  • 남창길;최승우;천희곤;조동율
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.44-49
    • /
    • 1997
  • AIN thin films were deposited on silicon and glass substrates by sputtering Al target and introducing mixed gases of argon and nitrogen into reactive RF magnetron sputter. The substrate was not heated to protect the PC (polycarbonate) substrate and the micro-sized pregroove morphology on the surface of PC substrate. But its temperature was around $100^{\circ}C$ due to the self-heating by plasma. The crystallinity, cross-section morphology and refractive index were characterized by changing various deposition parameters.

  • PDF

High Efficiency Dye-Sensitized Solar Cells: From Glass to Plastic Substrate

  • Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.294-294
    • /
    • 2010
  • Over the last decade, dye-sensitized solar cell (DSSC) has attracted much attention due to the high solar-to-electricity conversion efficiency up to 10% as well as low cost compared with p-n junction photovoltaic devices. DSSC is composed of mesoporous TiO2 nanoparticle electrodes coated with photo-sensitized dye, the redox electrolyte and the metal counter electrode. The performances of DSSC are dependent on constituent materials and interface as well as device structure. Replacing the heavy glass substrate with plastic materials is crucial to enlarge DSSC applications for the competition with inorganic based thin film photovoltaic devices. One of the biggest problems with plastic substrates is their low-temperature tolerance, which makes sintering of the photoelectrode films impossible. Therefore, the most important step toward the low-temperature DSSC fabrication is how to enhance interparticle connection at the temperature lower than $150^{\circ}C$. In this talk, the key issues for high efficiency plastic solar cells will be discussed, and several strategies for the improvement of interconnection of nanoparticles and bendability will also be proposed.

  • PDF

STUDY OF MULTILAYER STRUCTURE USING X-RAY DOUBLE CRYSTAL DIFFRACTION

  • Wu, Yunzhong;Xu, Xueming;Wang, Weiyuan
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.30-33
    • /
    • 1995
  • By using X-ray double crystal diffraction technique the multilayer structure composed of glass membrane, platinum film and $\alpha Al_2O_3$ substrate has been studied. It is found the stress is produced in the film by thermal mismatch within multilayer materials. The measuring results of thin film platinum resistors show that the stress were induce resistance change of device and different stress status will produce add resistance in different direction. Selecting proper glass material can make opposite stress in Pt film and opposite add resistance due to thermal mismatch. The reliability of Pt resistor has been improved with method of this stress compensation.

  • PDF

Optimization of Spin-On-Glass Planarization Process Using Statistical Design of Experiments (통계적 실험계획법을 이용한 SOG 평탄화 공정의 최적화)

  • 임채영;박세근
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.198-205
    • /
    • 1992
  • Abstract-Planarieation technology, which is essential to VLSI, has been developed using non-etch back Spin- On-Glass (SOG). Process factors for 1.5 micron double metal technology are optimized by the statistical design of experiments. Optimum conditions are found to be a process with twice SOG coating, sufficiently long hot plate baking at 300t, and furnace curing for 40 minutes below 400$^{\circ}$C.

  • PDF

Hole-Array and Pillar-Array Patterned Si Solar Cells

  • Hong, Seung-Hyouk;Kim, Hyunyub;Kim, Hyunki;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.300.2-300.2
    • /
    • 2013
  • Periodically shaped pillar-arrays and hole-arrays were fabricated on a Si wafer. Geometric features are similar in a periodic length of 4 ${\mu}m$ and a depth of 2 ${\mu}m$. For the hole-array patterns, positive PR processes were performed. UV exposed PR patterns were removed during a developing process to leave shapes of inversely replicated from a glass photomask. Meanwhile, negative PR processes were taken for the pillar-array patterns. UV exposed PR patterns were remained on a Si substrate having a same feature of patterns of a glass photomask. For an electrical aspect, a pillar structure has a short carrier-collection length resulting in the improved open-circuit voltage of 609 mV from 587 mV of a planar device. An improved performance may be achieved to reduce recombination loss along the patterning surface.

  • PDF

Field emission of diamond films grown on glass substrates at low temperatures

  • Lee, S.W.;Han, I.T.;Lee, N.;Choi, W.B.;Kim, J.M.;Jeon, D.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 1999
  • Using microwave plasma-enhanced chemical vapor deposition, diamond films were successfully grown on Ti-coated glass substrates at temperatures as low as around 500$^{\circ}C$ in behalf of practical applications to field emitters. Electron emission was observed at turn-on fields below 18V-$\mu\textrm{m}$. Field emission characteristics of diamond films were discussed in terms of their crystalline qualities. diamond films with poorer crystalline qualities showed better field emission properties.

  • PDF

Real-time Contaminant Particle Monitoring for Chemical Vapor Deposition of Borophosphosilicate and Phosphosilicate Glass Film by using In-situ Particle Monitor and Particle Beam Mass Spectrometer (ISPM 및 PBMS를 이용한 BPSG 및 PSG CVD 공정 중 발생하는 오염입자의 실시간 측정)

  • Na, Jeong Gil;Choi, Jae Boong;Moon, Ji Hoon;Lim, Sung Kyu;Park, Sang Hyun;Yi, Hun Jung;Chae, Seung Ki;Yun, Ju Young;Kang, Sang Woo;Kim, Tae Sung
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2010
  • In this study, we investigated the particle formation during the deposition of borophosphosilicate glass (BPSG) and phosphosilicate glass (PSG) films in thermal chemical vapor deposition reactor using in-situ particle monitor (ISPM) and particle beam mass spectrometer (PBMS) which installed in the reactor exhaust line. The particle current and number count are monitored at set-up, stabilize, deposition, purge and pumping process step in real-time. The particle number distribution at stabilize step was measured using PBMS and compared with SEM image data. The PBMS and SEM analysis data shows the 110 nm and 80 nm of mode diameter for BPSG and PSG process, respectively.