• Title/Summary/Keyword: Vacuum Furnace

Search Result 281, Processing Time 0.028 seconds

ELA Poly-Si과 SLS Poly-Si에서 Boron Activation에 관한 연구

  • Hong, Won-Ui;No, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.376-376
    • /
    • 2012
  • 본 연구는 Poly-Si에 이온 주입된 Boron의 Activation 거동을 연구하고자 SLS (Sequential Lateral Solidification) Poly-Si과 ELA (Excimer Laser Annealing) Poly-Si의 활성화 거동을 비교 분석하였다. SLS 및 ELA 결정화 방법으로 제조된 Poly-Si을 모재로 비 질량 분리 방식의 ISD (Ion Shower Doping) System을 사용하여 2.5~7.0 kV까지 이온주입 하였다. 이온주입 후 두 가지의 열처리 방법, 즉, FA 열처리(Furnace Annealing)와 RTA 열처리(Rapid Thermal Annealing)를 사용하여 도펀트 활성화 열처리를 수행하고 이온주입 조건 및 활성화 열처리 방법에 따른 결함 회복 및 도펀트 활성화 거동의 변화를 관찰하였다. TRIM-code Simulation 결과 가속 이온 에너지와 조사량이 증가 할수록 이온주입 시 발생하는 결함의 양이 증가하는 것을 정량적으로 계산하였다. 실험 결과 결함의 양이 증가 할수록 Activation이 잘되는 것을 관찰할 수 있었다. SLS Poly-Si에 비하여 ELA Poly-Si의 경우 도펀트 활성화 열처리 후 활성화 효율이 높게 나타났다. 본 결과는 Grain Boundary의 역할과 밀접한 관계가 있으며 간단한 정성적인 Model을 제시하였다. 활성화 효율의 경우 RTA 열처리 시편이 FA 시편에 비하여 높은 것이 관찰되었다. 본 결과는 열처리 온도 및 시간에 따라 변화하는 Boron의 특이한 활성화 거동인 Reverse Annealing 효과에 기인하는 것으로 규명되었다.

  • PDF

Sol-Gel법을 이용한 YZO/Si 이종접합 구조의 제작과 정류특성

  • Heo, Seong-Eun;Kim, Won-Jun;Kim, Chang-Min;Lee, Hwang-Ho;Lee, Byeong-Ho;Lee, Yeong-Min;Kim, Deuk-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.350-350
    • /
    • 2013
  • Sol-gel법을 이용하여 p-Si 기판위에 yttrium이 도핑된 ZnO (YZO)를 성장하였다. ZnO의 precursor로는 zinc acetate dihydrate를, yttrium의 source로는 yttrium acetate hydrate를 사용하였으며, 용매와 안정제로는 각각 2-methoxy ethanol과 monoethanolamine (MEA)를 사용하였다. yttrium의 doping 농도에 따른 영향을 알아보기 위하여 1~4 at.%로 제작된 YZO sol을 각각 p-type Si 기판에 성장하였으며, 이 후 furnace를 이용하여 500oC에서 1시간 동안 열처리하였다. 성장된 YZO 박막의 표면과 두께를 SEM을 통하여 확인하였으며, XRD를 통한 구조적인 특성을 분석한 결과 모든 박막에서 뚜렷한 c-축 배양성을 갖는 ZnO (0002)피크를 확인하였다. Hall effect를 통하여 YZO는 모두 n-type 특성을 나타낸다는 것을 확인하였으며, 광학적인 특성은 PL을 통해서 분석하였다. n-YZO/p-Si 이종접합의 전류-전압 특성을 분석한 결과 뚜렷한 정류특성을 나타내었다.

  • PDF

Fabrication of Large-Size Alumina by Pressure-Vacuum Hybrid Slip Casting

  • Cho, Kyeong-Sik;Lee, Seung Yeul
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.396-401
    • /
    • 2013
  • The size of various alumina ceramics used in the semiconductor and display industries must be increased to increase the size of wafers and panels. In this research, large alumina ceramics were fabricated by pressure-vacuum hybrid slip casting (PVHSC) employing a commercial powder, followed by sintering in a furnace. In the framework of the PVHSC method, the consolidation occurs not only by compression of the slip in the casting room but also by suction of the dispersion medium from the casting room. When sintered at $1650^{\circ}C$ for 4 h, the fabricated large-size alumina ($1,550{\times}300{\times}30mm^3$) exhibited a dense microstructure corresponding to more than 99.2% of the theoretical density and a high purity of 99.79%. The flexural and compressive strengths of the alumina plate were greater than 340 MPa and 2,600 MPa, respectively.

A study of loading property of the bioactive materials in porous Ti implants (다공성 티타늄 임플란트의 생리활성물질 담지특성에 관한 연구)

  • Kim, Yung-Hoon
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.281-286
    • /
    • 2013
  • Purpose: Surface modification is important techniques in modern dental and orthopedic implants. This study was performed to try embedding of bioactive materials in porous Ti implants. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. It's diameter and height were 4mm and 20mm. Embedding process was used to suction and vacuum chamber. Loading properties of porous Ti implants were evaluated by scanning electron microscope(SEM), confocal laser scanning microscope(CLSM), and UV-Vis-NIR spectrophotometer. Results: Internal pore structure was formed fully open pore. Average pore size and porosity were $10.253{\mu}m$ and 17.506%. Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. This porous structure can be embedded to bioactive materials. Therefore bioactive materials will be able to embedding to porous Ti implants. Bioactive materials embedding in the porous Ti implant will induced new bone faster.

Low temperature solid phase crystallization of amorphous silicon thin film by crystalline activation

  • Kim, Hyung-Taek;Kim, Young-Kwan
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.97-100
    • /
    • 1998
  • We have investigated the effects of crystalline activation on solid phase crystallization (SPC) of amorphous silicon (a-Si) thin films. Wet blasting and self ion implantation were employed as the activation treatments to induce macro or micro crystalline damages on deposited a-Si films. Low temperature and larger grain crystallization were obtained by the applied two-step activation. High degree of crystallinity was also observed on both furnace and rapid SPC. crystalline activations showed the promotion of nucleation on the activated regions and the retardation of growth in an amorphous matrix in SPC. The observed behavior of two-step SPC was strongly dependent on the applied activation and annealing processes. It was also found that the diversified effects by macro and micro activations on the SPC were virtually diminished as the annealing temperature increased.

  • PDF

Reverse annealing of boron doped polycrystalline silicon

  • Hong, Won-Eui;Ro, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.140-140
    • /
    • 2010
  • Non-mass analyzed ion shower doping (ISD) technique with a bucket-type ion source or mass-analyzed ion implantation with a ribbon beam-type has been used for source/drain doping, for LDD (lightly-doped-drain) formation, and for channel doping in fabrication of low-temperature poly-Si thin-film transistors (LTPS-TFT's). We reported an abnormal activation behavior in boron doped poly-Si where reverse annealing, the loss of electrically active boron concentration, was found in the temperature ranges between $400^{\circ}C$ and $650^{\circ}C$ using isochronal furnace annealing. We also reported reverse annealing behavior of sequential lateral solidification (SLS) poly-Si using isothermal rapid thermal annealing (RTA). We report here the importance of implantation conditions on the dopant activation. Through-doping conditions with higher energies and doses were intentionally chosen to understand reverse annealing behavior. We observed that the implantation condition plays a critical role on dopant activation. We found a certain implantation condition with which the sheet resistance is not changed at all upon activation annealing.

  • PDF

Ultrahigh Vacuum Study for the Model Systems of Ziegler-Natta Catalyst

  • 이창섭
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.661-666
    • /
    • 1995
  • The surface structure of the adsorption site for the identification of active sites involved in the Ziegler-Natta catalyst was studied by surface science techniques. As an example of a real catalyst, TiCl3 single crystals were prepared in a gradient furnace designed for this study and characterized by Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED) under ultrahigh vacuum condition. The chlorine covered Ti (0001) surface was employed as a model catalyst for the study of Ziegler-Natta catalyst. The diffuse LEED (DLEED) technique for the surface structural determination was applied to this disordered chlorine adsorbed on Ti (0001) surface. The diffuse scattering intensities were measured by a TV-computer method using a low light level video camera. From an analysis of two catalyst systems, the informations for the surface structure of the model catalyst surfaces were derived.

Vacuum Carburizing System for Powdered Metal Parts & Components

  • Kowakewski, Janusz;Kucharski, Karol
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1018-1021
    • /
    • 2006
  • Powdered metal parts and components may be carburized successfully in a vacuum furnace by combining carburizing technology $VacCarb^{TM}$ with a hi-tech control system. This approach is different from traditional carburizing methods, because vacuum carburizing is a non-equilibrium process. It is not possible to set the carbon potential as in a traditional carburizing atmosphere and control its composition in order to obtain a desired carburized case. This paper presents test results that demonstrate that vacuum carburizing system $VacCarb^{TM}$ carburized P.M. materials faster than traditional steel with acceptable results. In the experiments conducted, PM samples with the lowest density and open porosity showed a dramatic increase in the surface carbon content up to 2.5%C and a 3 times deeper case. Currently the boost-diffusion technique is applied to control the surface carbon content and distribution in the case. In the first boost step, the flow of the carburizing gas has to be sufficient to saturate the austenite, while avoiding soot deposition and formation of massive carbides. To accomplish this goal, the proper gas flow rate has to be calculated. In the case of P.M. parts, more carbon can be absorbed by the part's surface because of the additional internal surface area created by pores present in the carburized case. This amount will depend on the density of the part, the densification grade of the surface layer and the stage of the surface. "as machined" or "as sintered". It is believed that enhanced gas diffusion after initial evacuation of the P.M. parts leads to faster carburization from within the pores, especially when pores are open . surface "as sintered" and interconnected . low density. A serious problem with vacuum carburizing is delivery of the carbon in a uniform manner to the work pieces. This led to the development of the different methods of carburizing gas circulation such as the pulse/pump method or the pulse/pause technique applied in SECO/WARWICK's $VacCarb^{TM}$ Technology. In both cases, each pressure change may deliver fresh carburizing atmosphere into the pores and leads to faster carburization from within the pores. Since today's control of vacuum carburizing is based largely on empirical results, presented experiments may lead to better understanding and improved control of the process.

  • PDF

진공석영 전기로에서 열처리한 $CuInS_2$ 박막특성연구

  • Yang, Hyeon-Hun;Lee, Seok-Ho;Kim, Yeong-Jun;Na, Gil-Ju;Baek, Su-Ung;Han, Chang-Jun;Kim, Han-Ul;So, Sun-Yeol;Park, Gye-Chun;Lee, Jin;Jeong, Hae-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.17-17
    • /
    • 2010
  • Polycrystalline $CuInS_2$ thin films were performed from S/In/Cu Stacked elemental layer(SEL) method with post annealing. In thin method, the thin films were annealed in Vacuum of $10^{-3}$ torr or in S ambient. $CuInS_2$ thin films were manufctured by using the evaporation and the annealing with vacuum quartz furnace of sulfurization process was used in the vacuum chamber to the substrate temperature on the glass substrate the annealing temperature and characteristics thereof were investigated. The physical properties of the thin film were investigated under various fabrication conditions including the substrate temperature annealing time by XRD, FE-SEM, and Hall measurement system.

  • PDF

A Study on EPMA on Ni-Cr Alloy by Nb content for Porcelain Fused to Metal Crown (Nb이 첨가된 금속소부도재관용 Ni-Cr 합금 표면의 EPMA 관찰)

  • Kim, Chi-Young;Choi, Sung-Min;Cho, Hyeon-Seol
    • Journal of Technologic Dentistry
    • /
    • v.28 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • The effect of Nb on interfacial bonding characteristics of Ni-Cr alloy for porcelain fused to metal crown (PFM) has been studied in order to investigate oxide layer. A specimens of Ni-Cr alloy, which is 0.8mm in thickness, within the porcelain furnace of 1,000$^{\circ}C$ with four tests such as air, vacuum, air for 5 minutes and vacuum for 5 minutes in order to examine an oxide behavior of alloy surface generated by the adding of Nb to be controlled at a rate of 0, 1, 3 and 5. Oxide film was observed form of the fired specimens with scanning electron microscope (SEM), and at the same time it measured Electron Probe Micro Analyzer (EPMA). The result of this study were as follows: 1. Cr oxide film and Nb oxide film were observed from the surface of specimen to be controlled at a rate of Nb 1%. 2. Nb oxide film was observed from the interface of specimens to be controlled at a rate of Nb 1% and 3%. 3. The stability of oxide films that treated in air were more stable than treated under vacuum.

  • PDF