Abstract
The surface structure of the adsorption site for the identification of active sites involved in the Ziegler-Natta catalyst was studied by surface science techniques. As an example of a real catalyst, TiCl3 single crystals were prepared in a gradient furnace designed for this study and characterized by Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED) under ultrahigh vacuum condition. The chlorine covered Ti (0001) surface was employed as a model catalyst for the study of Ziegler-Natta catalyst. The diffuse LEED (DLEED) technique for the surface structural determination was applied to this disordered chlorine adsorbed on Ti (0001) surface. The diffuse scattering intensities were measured by a TV-computer method using a low light level video camera. From an analysis of two catalyst systems, the informations for the surface structure of the model catalyst surfaces were derived.