• Title/Summary/Keyword: Vacuum Control

Search Result 955, Processing Time 0.029 seconds

Enhanced Hybrid Multi Electrical Cupping System using S-PI Controller (S-PI 제어기를 이용한 개선된 하이브리드 멀티전동부항시스템)

  • Kim, Jong-Chan;Kim, CheeYong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1400-1407
    • /
    • 2015
  • In the paper, we suggest bettered EHMECS(Enhanced Hybrid Multi Electrical Cupping System) to regulate automatically vacuum pressure using many cupping cup at once. We controlled accurately the pressure using S-PI control technique in pump motor to input the air inside cupping cup. S-PI control compared constant velocity, load and velocity variance between existing PI and FLC(Fuzzy Logic Control). The stabilization time of suggested S-PI control improve 20% of existing PI and 8% of FLC. The error constant of normal condition improved 71% of existing PI and 62% of FLC in steady speed and 80% of existing PI and 67% of FLC in load change. Also the error constant about velocity variance improve 45% of PI control. It is prove the suggested S-PI control technique. When use long time vacuum pressure of cupping cup regulated the suggested S-PI control technique, can loosen knotted muscles.

A Study on the Development of Expert System for Pneumatic Vacuum Equipment Design (공압 진공장치 설계를 위한 전문가 시스템 개발에 관한 연구)

  • 신흥열;김준식;이재원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.15-21
    • /
    • 1997
  • Pneumatics is widly used in the industrial implementation, in the operation of air-powered actuators and the control devices needed in their operation. However, there are many empirical factors in pneumatics design, it might cause excessive design of pneumatic components. For that reason, we developed VDES(Vacuum Design Expert System) for the economic design of pneumatic vacuum equipment. VDES is achieved with CLIPS(C Language Integrated Production System) and knowledge base that contains a number of facts and rules for pneumatic vacuum design. Forward chaining and depth first search technique are used in this system. Appling VDES to the actual field, this system is verified to be a good efficiency and could be applied to the field of pneumatic vacuum equipment design.

  • PDF

Development of Connector Sealing Method for Maintaining of Vacuum in the Momentum Wheel (모멘텀 휠의 내부 진공 유지를 위한 커넥터 밀봉방법 개발)

  • Cheon, Dong-Ik;Gong, Sung-Chul;Oh, Hwa-Suk;Lee, Seung-Wu
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.25-30
    • /
    • 2008
  • In general, we utilize momentum wheel to control spacecraft. It needs vacuum test to analyze the effect of space environments. The conventional vacuum connector which is composed of steel has problems for test with built in momentum wheel because of weight, thermal expansion, etc. We suggest possibility to manufacture the vacuum connector using aluminum mount, epoxy and industrial D-Sub considering cost, weight. We verify the performance through vacuum test.

  • PDF

Analysis of fast pressure control by the Ziegler-Nichols method for a transport module of a high vacuum cluster tool (고진공 클러스터 장비의 반송모듈에 적용된 Ziegler-Nichols 방법에 의한 고속 압력제어에 관한 해석)

  • 장원익;이종현;백종태
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.284-291
    • /
    • 1996
  • We have implemented a fast pressure control system for the transport chamber of a high vacuum cluster tool for advance semiconductor fabrication and evaluated its performance. To overcome the typically slow response of mass flow controllers, the modified experimental method is used very effectively to optimize the pressure control procedure. We successfully obtained quite fast pressure control by adjusting the starting time and eht tuning constants by the Ziegler-Nichols method. In the transport pressure $10\times 10^{-5}$ torr, actual pressure control starts from 4 sec after an initial gas load of 2.1 sccm. As a result, optimum conditions for the tuning constants are the rise rate of 0.02 torr/sec, the lag time of 0.15 sec, and the sampling period of 0.5 sec. Then the settling time is about 9 sec within about $\pm$0.5% for the referenced value. This settling time is enhanced above 75 percents in comparison with conventional experimental method. To account for the experimental effects observed, a theoretical model was developed. This experimental result has a tendency to fit with the theoretical result of $\omega$=-1.0.

  • PDF

Ultrahigh Vacuum Technologies Developed for a Large Aluminum Accelerator Vacuum System

  • Hsiung, G.Y.;Chang, C.C.;Yang, Y.C.;Chang, C.H.;Hsueh, H.P.;Hsu, S.N.;Chen, J.R.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.309-316
    • /
    • 2014
  • A large particle accelerator requires an ultrahigh vacuum (UHV) system of average pressure under $1{\times}10^{-7}$ Pa for mitigating the impact of beam scattering from the residual gas molecules. The surface inside the beam ducts should be controlled with an extremely low thermal outgassing rate under $1{\times}10^{-9}Pa{\cdot}m^3/(s{\cdot}m^2)$ for the sake of the insufficient pumping speed. To fulfil the requirements, the aluminum alloys were adopted as the materials of the beam ducts for large accelerator that thanks to the good features of higher thermal conductivity, non-radioactivity, non-magnetism, precise machining capability, et al. To put the aluminum into the large accelerator vacuum systems, several key technologies have been developed will be introduced. The concepts contain the precise computer numerical control (CNC) machining process for the large aluminum ducts and parts in pure alcohol and in an oil-free environment, surface cleaning with ozonized water, stringent welding process control manually or automatically to form a large sector of aluminum ducts, ex-situ baking process to reach UHV and sealed for transportation and installation, UHV pumping with the sputtering ion pumps and the non-evaporable getters (NEG), et al. The developed UHV technologies have been applied to the 3 GeV Taiwan Photon Source (TPS) and revealed good results as the expectation. The problems of leakage encountered during the assembling were most associated with the vacuum baking which result in the consequent trouble shootings and more times of baking. Then the installation of the well-sealed UHV systems is recommended.

A Study on the Effects f Vacuum Degree on the Plastic Parts (진공도가 성형제품에 미치는 영향에 관한 연구)

  • 신남호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.293-298
    • /
    • 1999
  • To make use of various switches, relays, and control instruments, a connector (jack) is used to link the battery (power) and operating units. A connector must have precision as well as solidity to control the power in a car. To improve productivity, we researched and developed a connector molding by adapting vacuum system and we've made it possible to minimize the incomplete molding and weld-line. As a result, good quality can be warranted with less costs.

  • PDF

Study of Thrust-Vectoring Control Using Fluidic Counterflow Concept (Fluidic Counterflow 개념을 이용한 추력벡터제어에 관한 연구)

  • Jung, Sung-Jae;Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1948-1954
    • /
    • 2003
  • The thrust vector control using a fluidic counterflow concept is achieved by applying a vacuum to a slot adjacent to a primary jet which is shrouded by a suction collar. The vacuum produces a secondary reverse flowing stream near the primary jet. The shear layers between the two counterflowing streams mix and entrain mass from the surrounding fluid. The presence of the collar inhibits mass entrainment and the flow near the collar accelerates causing a drop in pressure on the collar. For the vacuum asymmetrically applied to one side of the nozzle, the jet will vector toward the low-pressure region. The present study is performed to investigate the effectiveness of thrust vector control using the fluidic counterflow concept. A computational work is carried out using the two-dimensional, compressible Navier-Stokes equations, with several kinds of turbulence models. The computational results are compared with the previous experimental ones. It is found that the present fluidic counterflow concept is a viable method to vector the thrust of a propulsion system.

  • PDF

A Study on the Thermal Characteristics of Dry Vacuum Pump with Vertical Screws (수직형 건식 진공 스크류 펌프의 열특성에 대한 연구)

  • Chang, Moon-Suk;Park, Jae-Hyun;Kim, Soo-Tae;Kim, Il-Gon;Cho, Seong-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, analysis and experiments were carried out on temperature distributions and thermal deformations in a dry vacuum pump with vertical screws for safe operation. When a vacuum pump is working, it is necessary to get rid of the heat generated by the friction of bearings and the compression of air to prevent the vacuum pump from being damaged by interference between two screws and housing through thermal deformation. Additional cooling was proposed by using oil flow through the inner channel of the rotating axis for lower temperature control of the vacuum pump. Analysis and experimental results were compared in terms of temperature distribution and thermal deformation of the vacuum pump, and two sets of results matched reasonably well. These results for a dry vacuum pump with vertical screws can be used in similar model development and can minimize errors in design and manufacture by providing reasonably accurate prediction in advance.

Design and Performance Evaluation of the Precision Pressure Control System for the High Vacuum Transport Module (고진공 운송계에서의 정밀 압력제어장치의 설게 및 성능시험)

  • Jang, W.I.;Jang, K.H.;Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.92-98
    • /
    • 1995
  • In the cluster tool, it is necessary to precisely control the vacuum pressure for the wafer transportation between transport module and cassette or process modules with the range of 1*10$^{-4}$ to 5*10$^{-5}$ torr. So we have designed the pressure control system for the transport module of the cluster tool and have evaluated its performance. Digital PID is utilized with the weighted sum of both three previous errors and one current error. The feedback signal is put into the nitrogen mass flow controller using the transport module controller. This pressure control system can prevent the transport module from the particle generation and backstreaming of hazardous process gases of the process chamber.

  • PDF