• Title/Summary/Keyword: Vacuum Adsorption

Search Result 301, Processing Time 0.035 seconds

Mixed-Island Formation and Electronic Structure of Metallo-Porphyrin Molecules on Au(111)

  • Kim, Ho-Won;Jeong, Gyeong-Hun;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.303-303
    • /
    • 2011
  • Orderings and electronic structures of organic molecules on metal substrates have been studied due to possible applications in electronic devices. In molecular systems, delocalized pi-electrons play important roles in the adsorption behaviors and electronic structures. We studied the adsorption and electronic structures of Co-Porphyrin molecules on Au(111) using scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperature. Molecules form closely packed two-dimensional islands on Au(111) surface with two different types, having different shape evolutions in our energy-dependent STM observations. The Kondo resonance state, occurred by spin exchange interaction between the Co center atom and conduction electrons in the metal substrate, was observed in one type, while it was absent in the other type in scanning tunneling spectroscopy measurements. Possible origins of two molecular shapes will be discussed.

  • PDF

Initial oxidation process on viinal Si(001) surface: ReaxFF based on molecular dynamics simulation

  • Yun, Gyeong-Han;Lee, Eung-Gwan;Choe, Hui-Chae;Hwang, Yu-Bin;Yun, Geun-Seop;Kim, Byeong-Hyeon;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.300-300
    • /
    • 2011
  • Si oxidation is a key process in developing silicon devices, such as highly integrated metal-oxide-semiconductor (MOS) transistors and antireflection-coating (ARC) on solar cell substrate. Many experimental and theoritical studies have been carried out for elucidating oxidation processes and adsorption structure using ab initio total energy and electronic structure calcultaions. However, the initial oxidation processes at step edge on vicinal Si surface have not been studied using the ReaxFF reactive force field. In this work, strucutural change, charge distribution of oxidized Si throughout the depth from Si surface were observed during oxidation processes on vicinal Si(001) surface inclined by $10.5^{\circ}$ of miscut angle toward [100]. Adsorption energys of step edge and flat terrace were calculated to compare the oxidation reaction at step edge and flat terrace on Si surface.

  • PDF

Changes of Electrical Properties of Graphene upon Introduction of Structural Defects and Gas Exposure

  • Kim, Kang-Hyun;Kang, Hae-Yong;Lee, Jae-Woo;Lee, Nam-Hee;Woo, Byung-Chill;Yun, Wan-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.474-474
    • /
    • 2011
  • Graphene is considered as a potential candidate for the key material in the ideal 2D nanoelectronics. Recently, it is reported that graphene has an interesting sensitivity to molecular adsorption on it. Such properties are believed to be enhanced by the existence of disorders and ripples inside graphene as well as by the interaction with the substrate underneath. Here, we report the effect of introducing structural disorders to the graphene on its electrical properties such as conductance, transconductance, low frequency noise, which can be successfully described by a simple model of the continuum percolation. In addition, the response of the graphene device to gaseous molecular adsorption was systematically investigated and the results were discussed along with the change in Raman spectra.

  • PDF

Pressure Measurement Using Field Electron Emission Phenomena

  • Cho, Boklae
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.83-89
    • /
    • 2014
  • Adsorption of residual gas molecules damped the emission current of a W (310) field electron emission (FE) emitter. The damping speed was linearly proportional to the pressure gauge readings at pressure ranging from ${\sim}10^{-8}Pa$ to ${\sim}10^{-9}Pa$, and the proportionality constant was employed to measure pressure in the $10^{-10}Pa$ range. A time plot of FE current revealed the existence of an "initial stable region" after the flash heating of W(310) FE, during which the FE current damps very slowly. The presence of non-hydrogen gas removed this region from the plot, supplying a means of qualitatively analysing the gas species.

Adsorption of molecular oxygen and $SO_2$ on Ni(100)

  • Hyunsukl Jeong;Changmin;Kim, Eunha;Hojun Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.180-180
    • /
    • 1999
  • The interaction of oxygen with a Ni(100) surface has been investigated using X-ray Photoelectron Spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) technique. Below 200L oxygen exposure, molecular oxygen was dissociated to atomic oxygen. Increasing oxygen exposure, -1s binding energy shifted from 531.0 eV to 533.0 eV due to molecular adsorption. The presence of molecular oxygen species was confirmed by NEXAFS. Molecular oxygen adsorbed on Ni(100) was oriented perpendicular to the surface. Upon heating over 150K molecular adsorbed oxygen surface was also analyzed using NEEXFS.

  • PDF

Ionic-to-Metallic Layer Transition in Cs Adsorption on Si(111)-(7$\times$7). Charge-State Selective Detection of Adsorbate by Cs+ Reactive Ion Scattering.

  • Han, Seung-Jin;Park, Sung-Chan;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.155-155
    • /
    • 2000
  • Adsorption of alkali metals on a silicon surface has attracted much attention due to its importance in metal-semiconductor interface technology, In particular, the bonding nature of alkali metal to silicon substrate has been a focus of fundamental research efforts. We examined the adsorbed layer of Cs on a Si(111)-(7$\times$) surface by reactive ion scattering (RIS) of hyperthermal Cs+ beams. RIS from a Cs-adsorbed surface gives rise to Cs, representing pickup of surface Cs by Cs projectile. The Cs intensity is proportional to surface coverage of Cs at a high substrate temperature (473 K), while it varies anomalously with Cs coverage at low temperatures (130-170 K). This observation indicates that RIS selectively detects metallic Cs on surface, but discriminates ionic Cs. Transition from ionic to metallic Cs adlayer is driven by thermal diffusion of Cs and their clustering process.

  • PDF

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

Scanning Tunneling Microscopy Study of Alcohol Adsorption on NiAl(110) Deposited by Pulsed Injection

  • Choi, Eun-Yeoung;Lee, Youn-Joo;Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.353-353
    • /
    • 2010
  • Alcohol is a vesatile polar solvent for molecules. As a preparation to deposit large molecules, we studied interaction of solvent molecules on metallic surface. in this work, we report on methanol adsorption on NiAl(110) with scanning tunneling microscopy (STM). These alcohol solvent molecules were deposited by a pulse injection method suitable for deposition of thermally unstable molecules. The injection of liquid alcohol onto the substrate in UHV was performed by using a high-speed solenoid valve with the back-pressure reduced down to 100 Torr. This technique allowed precise control over the amount of dosing of molecules to less than 1 L. Alcohol-induced features, attributed to methoxy, were found on bare NiAl(110) surface.

  • PDF

Chemisorption and orientation of Selenopheneon Si(100)-$2{\times}1$

  • Lee, Han-Koo;Kim, Ki-Jeong;Kim, Hyeong-Do;Shin, Hyun-Joon;Kim, Bong-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.372-372
    • /
    • 2010
  • We have investigated adsorption of selenophene on Si(100) at room temperature using high resolution photoemission spectroscopy (HRPES) and near edge X-ray absorption fine structure (NEXAFS) in the partial electron yield (PEY) mode. The Si 2p, C 1s, Se 3d spectra of selenophene on Si(100) show that selenophene is nondissociatively chemisorbed on Si(100)-$2{\times}1$ through [2+2] cycloaddition. NEXAFS has been conducted to characterize the adsorption geometry of selenophene on Si(100). Since the $\pi^*$ orbital of C=C bond show good angular dependence in carbon K-edge NEXAFS spectra, the angle $53{\pm}5^{\circ}$ determined from NEXAFS spectra. This majority structure is consistent with the [2+2] cycloaddition of selenophene to the dimer of the Si(100)-$2{\times}1$ surface.

  • PDF

Footprints of water molecules on Si(001) and co-adsorption configurations obtained via low temperature scanning tunneling microscopy

  • Tham, Tran Thi;Son, Lee-Seul;Oh, Suhk-Kun;Kang, Hee-Jae;Kim, Han-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.86-86
    • /
    • 2010
  • Water adsorption on Si(001)-c($4{\times}2$) surface is investigated at low temperature by using scanning tunneling microscope (STM) and ab initio pseudopotential calculations. $H_2O$ configurations of single and cluster of two molecules reveal "Y", "X" and "W" depressions as footprints on the surface. Atomic structures of $H_2O$ molecules, which are dissociatively adsorbed on the Si(001)-c($4{\times}2$) surface, are studied with simulated and STM images of the filled states. The generation processes of the growth configurations are systematically considered with elapsed time.

  • PDF