• Title/Summary/Keyword: Vaccines

Search Result 827, Processing Time 0.028 seconds

A Comparative study for single-shot immunization of diphtheria toxoid with combined PLGA microspheres.

  • Yoon, Mi-Kyeung;Lee, Jung-Min;Kim, Hee-Kyu;Choi, Young-Wook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.416.1-416.1
    • /
    • 2002
  • Biodegradable PLGA microspheres(MS) have been widely studied for delivering antigens because PLGA has the characteristics of various degradation rate. In general. since MS have shown potential for single-dose vaccines. the degradation rate of PLGA is determined by their molecular weight. polymer composition, etc. We studied the influences of molecular weight of PLGA. polymer composition and surfactant on in vitro release and in vivo effects. (omitted)

  • PDF

Correlation Between Auto-antibodies to Survivin and MUC1 Variable Number Tandem Repeats in Colorectal Cancer

  • Wang, Yu-Qian;Zhang, Hai-Hong;Liu, Chen-Lu;Xia, Qiu;Wu, Hui;Yu, Xiang-Hui;Kong, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5557-5562
    • /
    • 2012
  • Aim: The aim of this study was to investigate the frequency and correlation between auto-antibodies to survivin and MUC1 variable number tandem repeats (VNTR) in colorectal cancer (CRC), which can provide valuable information for the design of immunotherapeutic vaccines for this disease. Methods: Enzyme-linked immunosorbent assays (ELISA) were used to examine the level of auto-antibodies against survivin and MUC1 VNTR in the serum of 135 CRC patients and 95 healthy volunteers. Results: Using mean absorbance + 2 standard deviations (SD) of the healthy samples as a cut-off value, the positive rates of survivin and MUC1 VNTR auto-antibodies in CRC were 31.1% and 18.5%, respectively. Altogether, the survivin and MUC1 VNTR positive samples accounted for 36.3% of the CRC patients, and 7.4% were positive for both. Conclusion: A significant positive correlation was found between levels of specific antibodies against survivin and MUC1 VNTR in the serum of CRC patients (r = 0.3652, P < 0.0001), suggesting that vaccines against both targets would elicit immune responses more effectively.

Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19)

  • Ahn, Dae-Gyun;Shin, Hye-Jin;Kim, Mi-Hwa;Lee, Sunhee;Kim, Hae-Soo;Myoung, Jinjong;Kim, Bum-Tae;Kim, Seong-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.313-324
    • /
    • 2020
  • Coronavirus disease 2019 (COVID-19), which causes serious respiratory illness such as pneumonia and lung failure, was first reported in Wuhan, the capital of Hubei, China. The etiological agent of COVID-19 has been confirmed as a novel coronavirus, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is most likely originated from zoonotic coronaviruses, like SARS-CoV, which emerged in 2002. Within a few months of the first report, SARS-CoV-2 had spread across China and worldwide, reaching a pandemic level. As COVID-19 has triggered enormous human casualties and serious economic loss posing global threat, an understanding of the ongoing situation and the development of strategies to contain the virus's spread are urgently needed. Currently, various diagnostic kits to test for COVID-19 are available and several repurposing therapeutics for COVID-19 have shown to be clinically effective. In addition, global institutions and companies have begun to develop vaccines for the prevention of COVID-19. Here, we review the current status of epidemiology, diagnosis, treatment, and vaccine development for COVID-19.

Efficient Induction of Th1-type Immune Responses to Hepatitis B Virus Antigens by DNA Prime-Adenovirus Boost

  • Lee, Chang-Geun;Yang, Se-Hwan;Park, Su-Hyung;Song, Man-Ki;Choi, So-Young;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • Background: Chronic infection with hepatitis B virus (HBV) affects about 350 million people worldwide, which have a high risk of development of cirrhosis and hepatocellular carcinoma. Treatment of chronic HBV infection relies on IFN-${\alpha}$ or lamivudine. However, interferon-${\alpha}$ is effective in only about 30% of patients. Also, the occurrence of escape mutations limits the usage of lamivudine. Therefore, the development and evaluation of new compounds or approaches are urgent. Methods: We comparatively evaluated DNA and adenoviral vaccines expressing HBV antigens, either alone or in combined regimens, for their ability to elicit Th1-type immune responses in Balb / c mice which are believed to be suited to resolve HBV infection. The vaccines were tested with or without a genetically engineered IL-12 (mIL-12 N220L) which was shown to enhance sustained Th1-type immune responses in HCV E2 DNA vaccine. Results: Considering the Th1-type cytokine secretion and the IgG2a titers, the strongest Th1-type immune response was elicited by the DNA prime-adenovirus boost regimen in the presence of mIL-12 N220L. In addition, the codelivery of mIL-12 N220L modulated differentially the immune responses by different vaccination regimens. Conclusion: Our results suggest that the DNA prime-adenovirus boost regimen in the presence of mIL-12 N220L may be the best candidate for HBV vaccine therapy of the regimens tested in this study and will be worthwhile being evaluated in chronic HBV patients.

Leading Study for the Restoration of Pediatric Immunization Systems in North Korea following Reunification of Korean Peninsula (통일 후 북한지역 영·유아 대상 예방접종체계 수복을 위한 선행연구)

  • Song, Seulki;Bang, Joon Seok
    • Korean Journal of Clinical Pharmacy
    • /
    • v.25 no.4
    • /
    • pp.223-230
    • /
    • 2015
  • Background: 8,000 children in North Korea died before they reached the 1 year after births in 2013. The high mortality rate of children under five years of age is mainly caused by infectious diseases and malnutrition. The need for national pediatric immunization and supply of vaccines will be vital when the abrupt reunification occurs. Objective: The purpose of this study is to scrutinize the pediatric immunization coverage of North Korea. Additionally it is to estimate the amount and the costs needed to vaccinate. Methods: The target population is the children of North Korea. The method is based on a pre-survey and an interview of North Korea defectors. The target interviewees searched for are as follows; doctors, teachers, and others. The interview includes questions on mortality rates and immunization coverage. The analysis is largely based on the statements of the health care providers within the selected group. Results: The interviewees are 8; 7 female and 1 male. The birth years range from 1956 to 1982. 3 out of 8 are former health care providers; a doctor, a pharmacist, and a nurse. The morbidity rate of infectious diseases exceeds the data from WHO. The immunization coverage is nearly 0% after 1980s. In order to ensure the welfare of North Korean children, at least 8,234,000 vaccine doses, requiring over 105 million U.S. dollars, are needed. Conclusion: The morbidity rate of infectious disease in North Korea is conspicuous. The preparation for supply and expenditure of vaccines is vital.

Expression of the Apx Toxins of Actinobacillus pleuropneumoniae in Saccharomyces cerevisiae and Its Induction of Immune Response in Mice

  • Park Seung-Moon;Choi Eun-Jin;Kwon Tae-Ho;Jang Yong-Suk;Yoo Han-Sang;Choi Woo Bong;Park Bong-Kyun;Kim Dae-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.362-366
    • /
    • 2005
  • Actinobacillus pleuropneumoniae is an important pig pathogen, which is responsible for swine pleuropneumonia, a highly contagious respiratory infection. To develop subunit vaccines for A. pleuropneumoniae infection, the Apx toxin genes, apxI and apxII, which are thought to be important for protective immunity, were expressed in Saccharomyces cerevisiae, and the induction of immune responses in mice was examined. The apxI and apxII genes were placed under the control of a yeast hybrid ADH2-GPD promoter (AG), consisting of alcohol dehydrogenase II (ADH2) and the GPD promoter. Western blot analysis confirmed that both toxins were successfully expressed in the yeast. The ApxIA and ApxIIA-specific IgG antibody response assays showed dose dependent increases in the antigen-specific IgG antibody titers. The challenge test revealed that ninety percent of the mice immunized with ApxIIA or a mixture of ApxIA and ApxIIA, and sixty percent of mice immunized with ApxIA survived, while none of those in the control groups survived longer than 36 h. These results suggest that vaccination of the yeast ex­pressing the ApxI and ApxII antigens is effective for the induction of protective immune responses against A. pleuropneumoniae infections in mice.

Immunogenomics approaches to study host innate immunity against intestinal parasites

  • Lillehoj, Hyun S.
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.7-16
    • /
    • 2006
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease - causing pathogens represent major challenges to the poultry industry. More than 95 % of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper - virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

  • PDF

Unraveling Haplotype Diversity of the Apical Membrane Antigen-1 Gene in Plasmodium falciparum Populations in Thailand

  • Lumkul, Lalita;Sawaswong, Vorthon;Simpalipan, Phumin;Kaewthamasorn, Morakot;Harnyuttanakorn, Pongchai;Pattaradilokrat, Sittiporn
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.153-165
    • /
    • 2018
  • Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pair-wise population differentiation ($F_{st}$ indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the $F_{st}$ indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand's borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS.

Transcriptional Analysis for Oral Vaccination of Recombinant Viral Proteins against White Spot Syndrome Virus (WSSV) in Litopenaeus vannamei

  • Choi, Mi-Ran;Kim, Yeong-Jin;Jang, Ji-Suk;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.170-175
    • /
    • 2011
  • This study was carried out for the molecular level identification of recombinant protein vaccine efficacy, by oral feeding against white spot syndrome virus infection, with the comparison of viral mRNA transcriptional levels in shrimp cells. For the determination of WSSV dilution ratio for the vaccination experiment by oral feeding, in vivo virus titration was carried out using different virus dilutions of virus stock ($1{\times}10^2$, $2{\times}10^2$, and $1{\times}10^3$). Among the dilution ratios, $2{\times}10^2$ diluted WSSV stock was chosen as the optimal condition because this dilution showed 90% mortality at 10 days after virus injection. Recombinant viral proteins, rVP19 and rVP28, produced as protein vaccines were delivered in shrimps by oral feeding. The cumulative mortalities of the shrimps vaccinated with rVP19 and rVP28 at 21 days after the challenge with WSSV were 66.7% and 41.7%, respectively. This indicates that rVP28 showed a better protective effect against WSSV in shrimp than rVP19. Through the comparison of mRNA transcriptional levels of viral genes from collected shrimp organ samples, it was confirmed that viral gene transcriptions of vaccinated shrimps were delayed for 4~10 days compared with those of unvaccinated shrimps. Protection from WSSV infection in shrimp by the vaccination with recombinant viral proteins could be accomplished by the prevention of entry of WSSV due to the shrimp immune system activated by recombinant protein vaccines.

Immune responses th the vaccines of viral systemic necrosis of carp virus (VSNCV) of comom carp, Cyprinus carpio L. (잉어류 바이러스성전신괴사증바이러스 (VSNCV) 백신 투여에 대한 잉어의 면역반응)

  • Jo, Mi-Yeong;Son, Sang-Gyu;Kim, Lee-Cheong;Kim, Jin-U;O, Myeong-Ju;Jeong, Seong-Ju;Park, Su-Il
    • Journal of fish pathology
    • /
    • v.16 no.3
    • /
    • pp.175-181
    • /
    • 2003
  • VSNC is a viral disease causing significant economic losses in cultured carp Ciprinus carpio L. in Korea. Carps were immunized with prepared vaccines against VSNCV and examined specific and nonspecific immune responses. Carps were injected by O.2㎖ of formalin-killed vaccine (FKV), heat-killed vaccine (HKV) or E-MEM, respectively and dealt with boost with same way two weeks later. The lysozyme activity of serum and chemiluminescent reponses of head-kidney leucocytes showed increased responses during 2-7 days post-first injection (pfi) and post-boost (pb) in the vaccinated fish, and then decreased to the level of control. As measured by ELISA, vaccinated groups showed a significant increase in VSNCV-specific serum antibodies between 2 weeks pfi and 6weeks pb with a peak at 2 weeks pb. Results of the virus challenge showed that the fish vaccinated with FKV have induced protective immunity, while HKV injection hardly provided protection.