Browse > Article
http://dx.doi.org/10.4014/jmb.2003.03011

Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19)  

Ahn, Dae-Gyun (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Shin, Hye-Jin (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Kim, Mi-Hwa (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Lee, Sunhee (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Kim, Hae-Soo (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Myoung, Jinjong (Korea Zoonosis Research Institute and Genetic Engineering Research Institute, Jeonbuk National University)
Kim, Bum-Tae (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Kim, Seong-Jun (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.3, 2020 , pp. 313-324 More about this Journal
Abstract
Coronavirus disease 2019 (COVID-19), which causes serious respiratory illness such as pneumonia and lung failure, was first reported in Wuhan, the capital of Hubei, China. The etiological agent of COVID-19 has been confirmed as a novel coronavirus, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is most likely originated from zoonotic coronaviruses, like SARS-CoV, which emerged in 2002. Within a few months of the first report, SARS-CoV-2 had spread across China and worldwide, reaching a pandemic level. As COVID-19 has triggered enormous human casualties and serious economic loss posing global threat, an understanding of the ongoing situation and the development of strategies to contain the virus's spread are urgently needed. Currently, various diagnostic kits to test for COVID-19 are available and several repurposing therapeutics for COVID-19 have shown to be clinically effective. In addition, global institutions and companies have begun to develop vaccines for the prevention of COVID-19. Here, we review the current status of epidemiology, diagnosis, treatment, and vaccine development for COVID-19.
Keywords
2019-nCoV; COVID-19; SARS-CoV-2; coronavirus; outbreak;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. 2014. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int. J. Infect. Dis. 20: 42-46.   DOI
2 Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. 2016. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov. 15: 327-347.   DOI
3 Choy M. 2016. Pharmaceutical approval update. P T. 41: 416-441.
4 Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Cas e JB, et al. 2017. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 9.
5 Mulangu S, Dodd LE, Davey RT, Jr., Tshiani Mbaya O, Proschan M, Mukadi D, et al. 2019. A Randomized, controlled trial of ebola virus disease therapeutics. N. Engl. J. Med. 381: 2293-2303.   DOI
6 Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. 2020. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 382: 929-936.   DOI
7 Moderna's pipeline Available from https://www.modernatx.com/pipeline. Accessed 28 Feb. 2020
8 mRNA platform: Enabling Drug Discovery & Development Available from https://www.modernatx.com/mrna-technology/mrna-platform-enabling-drug-discovery-development. Accessed 28 Feb. 2020.
9 hyFc platform. Available from http://www.genexine.com/m21.php. Accessed 20 Feb. 2020
10 Seo YB, Im SJ, Namkoong H, Kim SW, Choi YW, Kang MC, et al. 2014. Crucial roles of interleukin-7 in the development of T follicular helper cells and in the induction of humoral immunity. J. Virol. 88: 8998-9009.   DOI
11 Lee JH, Cho JH, Yeo J, Lee SH, Yang SH, Sung YC, et al. 2013. The pharmacology study of a new recombinant TNF receptor-hyFc fusion protein. Biologicals 41: 77-83.   DOI
12 Loset GA, Roux KH, Zhu P, Michaelsen TE, Sandlie I. 2004. Differential segmental flexibility and reach dictate the antigen binding mode of chimeric IgD and IgM: implications for the function of the B cell receptor. J. Immunol. 172: 2925-2934.   DOI
13 Kang MC, Park HW, Choi DH, Choi YW, Park Y, Sung YC, et al. 2017. Plasmacytoid dendritic cells contribute to the protective immunity induced by intranasal treatment with Fc-fused interleukin-7 against lethal influenza virus infection. Immune Netw. 17: 343-351.   DOI
14 Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2: 69.   DOI
15 Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, et al. 2013. Antimalaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 23: 300-302.   DOI
16 Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. 2006. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis. 6: 67-69.   DOI
17 Kono M, Tatsumi K, Imai AM, Saito K, Kuriyama T, Shirasawa H. 2008. Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. Antiviral Res. 77: 150-152.   DOI
18 Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. 2020. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J. Virol. 94(5). pii: e02015-19.
19 Tirado SM, Yoon KJ. 2003. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 16: 69-86.   DOI
20 Khandia R, Munjal A, Dhama K, Karthik K, Tiwari R, Malik YS, et al. 2018. Modulation of Dengue/Zika Virus pathogenicity by antibody-dependent enhancement and strategies to protect against enhancement in Zika Virus infection. Front Immunol. 9: 597.   DOI
21 Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2 020. A p neumonia outbreak as sociated with a n ew coronavirus of probable bat origin. Nature 579: 270-273.   DOI
22 Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, et al. 2014. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys. Res. Commun. 451: 208-214.   DOI
23 Kim TW, Lee JH, Hung CF, Peng S, Roden R, Wang MC, et al. 2004. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J. Virol. 78: 4638-4645.   DOI
24 Duffy S. 2018. Why are RNA virus mutation rates so damn high? PLoS Biol. 16: e3000003.   DOI
25 Yeager C L, A s hmun R A, W illiams RK, C ardellichio C B, Shapiro LH, Look AT, et al. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357: 420-422.   DOI
26 Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450-454.   DOI
27 Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. 2005. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 102: 7988-7993.   DOI
28 Tresnan DB, Levis R, Holmes KV. 1996. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 70: 8669-8674.   DOI
29 Delmas B, Gelfi J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, et al. 1992. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature. 357: 417-420.   DOI
30 Willman M, Kobasa D, Kindrachuk J. 2019. A comparative analysis of factors influencing two outbreaks of Middle Eastern respiratory syndrome (MERS) in Saudi Arabia and South Korea. Viruses 11. pii: E1119.
31 Reusken CB, Schilp C, Raj VS, De Bruin E, Kohl RH, Farag EA, et al. 2016. MERS-CoV infection of alpaca in a region where MERS-CoV is endemic. Emerg. Infect. Dis. 22: 1129-1131.   DOI
32 WHO Novel Coronavirus (2019-nCoV) SITUATION REPORT - 1 21 JANUARY 2020. Available from https://www.who.int/docs/default-source/coronaviruse/situationreports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4. Accessed 28 Feb. 2020.
33 WHO Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available from https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. Accessed 02 Mar. 2020.
34 WHO Coronavirus disease 2019 (COVID-19) Situation Report - 55 (15 Mar 2020). Available from https://www.who.int/docs/default-source/coronaviruse/situationreports/20200315-sitrep-55-covid-19.pdf?sfvrsn=33daa5cb_8. Accessed 19 Mar. 2020.
35 WHO Coronavirus disease 2019 (COVID-19) Situation Report - 26 (15 Feb 2020). Available from https://www.who.int/docs/default-source/coronaviruse/situationreports/20200215-sitrep-26-covid-19.pdf?sfvrsn=a4cc6787_2. Accessed 02 Mar 2020.
36 KCDC COVID-19 situation reports in South Korea (24 Feb 2020) Available from https://www.cdc.go.kr/board/board.es?mid=a20501000000&bid=0015&act=view&list_no=366324&tag=&nPage=1. Accessed 28 Feb. 2020.
37 KCDC COVID-19 situation reports in South Korea (18 Feb 2020). Available from https://www.cdc.go.kr/board/board.es?mid=a20501000000&bid=0015&act=view&list_no=366228&tag=&nPage=3. Accessed 28 Feb. 2020.
38 Wong ACP, Li X, Lau SKP, Woo PCY. 2019. Global epidemiology of bat coronaviruses. Viruses. 11.
39 Krempl C, Schultze B, Herrler G. 1995. Analysis of cellular receptors for human coronavirus OC43. Adv. Exp. Med. Biol. 380: 371-374.   DOI
40 Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, et al. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495: 251-254.   DOI
41 Huang X, Dong W, Milewska A, Golda A, Qi Y, Zhu QK, et al. 2015. Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J. Virol. 89: 7202-7213.   DOI
42 Williams RK, Jiang GS, Holmes KV. 1991. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Natl. Acad. Sci. USA 88: 5533-5536.   DOI
43 Pan X, Chen D, Xia Y, Wu X, Li T, Ou X, et al. 2020. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect. Dis. pii: S1473-3099.
44 Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395: 565-574.   DOI
45 Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. 2020. Severe acute respiratory syndrome-related coronavirus: the species and its viruses - a statement of the coronavirus study group. BioRxiv. 20200207: 937862.
46 KCDC COVID-19 situation reports in South Korea (01 Mar 2020). Available from https://www.cdc.go.kr/board/board.es?mid=a20501000000&bid=0015&act=view&list_no=366410&tag=&nPage=1. Accessed 02 Mar. 2020.
47 WHO Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Available from https://www.who.int/csr/sars/country/table2004_04_21/en/. Accessed 28 Feb. 2020.
48 WHO Middle East respiratory syndrome coronavirus (MERS-CoV) monthly summary, November 2019. Available from https://www.who.int/emergencies/mers-cov/en/. Accessed 28 Feb. 2020.
49 Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. 2020. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. doi: 10.1001/jama.2020.2565. [Epub ahead of print].
50 Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. 2020. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 382: 970-971.   DOI
51 Chen Y, Chan KH, Kang Y, Chen H, Luk HK, Poon RW, et al. 2015. A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus. Emerg. Microbes Infect. 4: e26.
52 Meyer B, Drosten C, Muller MA. 2014. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res. 194: 175-183.   DOI
53 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. 2020. A Novel Coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382: 727-733.   DOI
54 Wang C, Horby PW, Hayden FG, Gao GF. 2020. A novel coronavirus outbreak of global health concern. Lancet 395: 470-473.   DOI
55 Gao J, Tian Z, Yang X. 2020. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 14: 72-73.   DOI
56 Sola I, Almazan F, Zuniga S, Enjuanes L. 2015. Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2: 265-288.   DOI
57 Fehr AR, Perlman S. 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282: 1-23.   DOI
58 Fung TS, Liu DX. 2019. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 73: 529-557.   DOI
59 Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. 2004. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun. 323: 264-268.   DOI
60 Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. 2003. Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect. Dis. 3: 722-727.   DOI
61 Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, et al. 2004. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA 101: 10012-10017.   DOI
62 Mukherjee P, Desai P, Ross L, White EL, Avery MA. 2008. Structure-based virtual screening against SARS-3CL(pro) to identify novel non-peptidic hits. Bioorg. Med. Chem. 16: 4138-4149.   DOI
63 Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. 2004. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 59: 252-256.   DOI
64 Chan KS, Lai ST, Chu CM, Tsui E, Tam CY, Wong MM, et al. 2003. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med. J. 9: 399-406.
65 MSIT Research projects initiation for drug repositioning study for COVID-19 treatment. Available from https://www.msit.go.kr/web/msipContents/contentsView.do?cateId=_policycom2&artId=2657968. Accessed 28 Feb. 2020
66 Zhang C, Maruggi G, Shan H, Li J. 2019. Advances in mRNA vaccines for infectious diseases. Front Immunol. 10: 594.   DOI
67 Andre FE. 2001. The future of vaccines, immunisation concepts and practice. Vaccine 19: 2206-2209.   DOI
68 Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020. A pneumonia outbreak as sociated with a n ew coronavirus of probable bat origin. Nature 259: 270-273.
69 Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676-679.   DOI
70 Corman VM, Ithete NL, Richards LR, Schoeman MC, Preiser W, Drosten C, et al. 2014. Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J. Virol. 88: 11297-11303.   DOI
71 Ji W, Wang W, Zhao X, Zai J, Li X. 2020. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J. Med. Virol. 92: 433-440.   DOI
72 Did pangolins spread the China coronavirus to people? Available from https://www.nature.com/articles/d41586-020-00364-2#ref-CR1. Accessed 28 Feb 2020.
73 Liu P, Chen W, Chen JP. 2019. Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis javanica). Viruses 11. pii: E979.
74 Graham RL, Donaldson EF, Baric RS. 2013. A decade a fter SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 11: 836-848.   DOI
75 Leyssen P, Balzarini J, De Clercq E, Neyts J. 2005. The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of IMP dehydrogenase. J. Virol. 79: 1943-1947.   DOI
76 Pronker ES, Weenen TC, Commandeur H, Claassen EH, Osterhaus AD. 2013. Risk in vaccine research and development quantified. PLoS One 8: e57755.   DOI
77 Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25. 25(3). doi: 10.2807/1560-7917.
78 WHO Coronavirus disease (COVID-19) technical guidance: Laboratory testing for 2019-nCoV in humans. Available from https://www.who.int/emergencies/diseases/novelcoronavirus-2019/technical-guidance/laboratory-guidance. Accessed 02 Mar. 2020.
79 Wang Y, Wang W, Xu L, Zhou X, Shokrollahi E, Felczak K, et al. 2016. Cross talk between nucleotide synthesis pathways with cellular immunity in constraining hepatitis E virus replication. Antimicrob. Agents Chemother. 60: 2834-2848.   DOI
80 Debing Y, Emerson SU, Wang Y, Pan Q, Balzarini J, Dallmeier K, et al. 2014. Ribavirin inhibits in vitro hepatitis E virus replication through depletion of cellular GTP pools and is moderately synergistic with alpha interferon. Antimicrob. Agents Chemother. 58: 267-273.   DOI
81 De Clercq E. 2019. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem. Asian J. 14: 3962-3968.   DOI
82 Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. 2020. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176: 104742.   DOI
83 Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. 2003. Coronavirus as a possblie cause of severe acute respiratory syndrome. Lancet 361: 1319-1325.   DOI
84 Yang X, Yu Y, Xu J, Shu H, Xia Ja, Liu H, et al. 2020. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a singlecentered, retrospective, observational study. Lancet Respir. Med. pii: S2213-2600(20)30079-5.
85 Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. 2020. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy doi: 10.1111/all.14238. [Epub ahead of print].
86 Guarner J. 2020. Three emerging coronaviruses in two decades. Am. J. Clin. Pathol. 153: 420-421   DOI
87 Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. 2009. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7: 226-236.   DOI
88 Li F. 2016. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3: 237-261.   DOI
89 Sun C, Chen L, Yang J, Luo C, Zhang Y, Li J, et al. 2020. SARS-CoV-2 and SARS-CoV Spike-RBD structure and receptor binding comparison and potential implications on neutralizing antibody and vaccine development. BioRxiv. doi: 10.1101/2020.02.16.951723
90 He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, et al. 2004. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem. Biophys. Res. Commun. 324: 773-781.   DOI
91 Okba NM, Raj VS, Haagmans BL. 2017. Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches. Curr. Opin. Virol. 23: 49-58.   DOI
92 Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. 2005. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology 334: 160-165.   DOI
93 CEPI to fund three progrannes to develop vaccines against the novel coronavirus (nCoV-2019). Available from https://cepi.net/news_cepi/cepi-to-fund-three-programmes-to-developvaccines-against-the-novel-coronavirus-ncov-2019. Accessed 28 Feb. 2020
94 Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30: 269-271.   DOI
95 So LK, Lau AC, Yam LY, Cheung TM, Poon E, Yung RW, et al. 2003. Development of a standard treatment protocol for severe acute respiratory syndrome. Lancet 361: 1615-1617.   DOI
96 Clover Biopharmaceuticals vaccines programs. Available from http://www.cloverbiopharma.com/index.php?m=content&c=index&a=lists&catid=42. Accessed 28 Feb. 2020
97 CEPI and GSK announce collaboration to strengthen the global effort to develop a vaccine for the 2019-nCoV virus. Available from https://www.gsk.com/en-gb/media/pressreleases/cepi-and-gsk-announce-collaboration-to-strengthenthe-global-effort-to-develop-a-vaccine-for-the-2019-ncov-virus/. Accessed 28 Feb. 2020
98 'Significant step' in COVID-19 vaccine quest Available from https://www.uq.edu.au/news/article/2020/02/significantstep%E2%80%99-covid-19-vaccine-quest. Accessed 28 Feb. 2020
99 Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, et al. 2004. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428: 561-564.   DOI
100 Sardesai NY, Weiner DB. 2011. Electroporation delivery of DNA vaccines: prospects for success. Curr. Opin. Immunol. 23: 421-429.   DOI
101 Inovio Accelerates Timeline for COVID-19 DNA Vaccine INO-4800. Available from http://ir.inovio.com/news-and-media/news/press-release-details/2020/Inovio-Accelerates-Timeline-for-COVID-19-DNA-Vaccine-INO-4800/default.aspx. Accessed 03 Mar. 2020
102 Inovio's produc pipeline Available from https://www.inovio.com/product-pipeline. Accessed 28 Feb. 2020
103 dMAb Technology platform Available from https://www.inovio.com/technology#dmab. Accessed 28 Feb. 2020.
104 Pardi N, Hogan MJ, Porter FW, Weissman D. 2018. mRNA vaccines - a new era in vaccinology. Nat. Rev. Drug Discov. 17: 261-279.   DOI