• Title/Summary/Keyword: Vaccine strains

Search Result 235, Processing Time 0.033 seconds

Efficacy and effectiveness of pneumococcal conjugate vaccine in children (폐구균 단백 결합 백신의 효능 및 효과)

  • Lee, Hoan Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.3
    • /
    • pp.235-241
    • /
    • 2006
  • Streptococus pneumoniae is an important cause of invasive infections as well as non-invasive infections such as acute otitis media and sinusitis both in children and adults. Resistance of S. pneumoniae to multiple antimicrobials is increasing and poses therapeutic challenges, and prevention became more important. 23-valent polysaccharide vaccine has been used for the last several decades, but is not effective in children <2 years of age, the highest risk group of invasive diseases. Recently, a 7-valent pneumococcal protein conjugate vaccine(PCV) which is effective in infants and young children has been developed. The efficacy of PCVs against invasive pneumococcal disease and pneumonia is well established and is documented in several well-conducted studies. However, the effect of PCVs on otitis media is less obvious and more complex. PCVs clearly reduce diseases caused by vaccine-type(VT) pneumococci, but replacement of VT serotypes by non-VT serotypes in nasopharyngeal carriage of S. pneumoniae is responsible for the increase in acute otitis media caused by non-VT serotypes. Three years after introduction of PCV in the US, some increase of invasive infections with serotype 19A possibly due to serotype switching within certain vaccine type strains has been noted. Since most antibiotic-resistance in S. pneumoniae is confined to VT serotypes, vaccine use also reduces antibiotic resistance. With development of PCV, there was a great advance in the prevention of pneumococcal diseases, but replacement with potential virulent organisms and development of antibiotic resistance in non-VT pneumococci is a possibility that needs careful monitoring.

Serotype Variations of Agglutinogen and Fimbriae in the Korean Isolates of Bordetella pertussis (국내 Bordetella pertussis 분리균주에서 Agglutinogen과 Fimbriae 혈청형 변이 분석)

  • Jung, Sang-Oun;Moon, Yu-Mi;Sung, Hwa-Young;Kang, Yeon-Ho;Yu, Jae-Yon
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.221-227
    • /
    • 2008
  • Bordetella pertussis is pathogenic bacteria causing pertussis, a infectious respiratory disease for the infants. The incidence rate of pertussis was significantly decreased after introduction of vaccine. However, increased pertussis cases are recently reported in several countries with high vaccine coverage. One of the inferred reasons is genotype or serotype variation between circulating strains and vaccine strains. Therefore, it is required to confirm the variation status of the isolates by genotype or serotype analysis and the possibility of pertussis outbreak in Korea should be estimated. For this, the serotype variations of the isolates from $1999\sim2006$ were investigated in agglutinogen and fimbriae. As the result, the most frequent serotype in the isolated strains was agglutinogen 1 and fimbriae 2 serotypes. Moreover, serotype transition from vaccine serotypes to non-vaccine serotypes was observed. Especially, the transition pattern of agglutinogen serotype was directed to increase a different type (agg 1) from the vaccine type (agg 1,2). However, in case of fimbriae, the same type (fim 2) with vaccine strain was increased. These results were also observed in other countries with increasing incidence of pertussis. For more predictable results to know increasing possibility of pertussis incidence in Korea, the studies on genetic variations of antigenic determinant genes and prevalence of antibody titer in normal population should be performed in the further.

The Evolving Epidemiology of Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Strains Isolated from Adults in Crete, Greece, 2009-2016

  • Maraki, Sofia;Mavromanolaki, Viktoria Eirini;Stafylaki, Dimitra;Hamilos, George;Samonis, George
    • Infection and chemotherapy
    • /
    • v.50 no.4
    • /
    • pp.328-339
    • /
    • 2018
  • Background: Pneumococcal disease is a major cause of morbidity and mortality worldwide, especially in patients with comorbidities and advanced age. This study evaluated trends in epidemiology of adult pneumococcal disease in Crete, Greece, by identifying serotype distribution and antimicrobial resistance of consecutive Streptococcus pneumoniae strains isolated from adults during an 8-year time period (2009-2016) and the indirect effect of the infant pneumococcal higher-valent conjugate vaccines 10-valent pneumococcal conjugate vaccine (PCV10) and 13-valent pneumococcal conjugate vaccine (PCV13). Materials and Methods: Antimicrobial susceptibility was performed by E-test and serotyping by Quellung reaction. Multidrug resistance (MDR) was defined as non-susceptibility to penicillin (PNSP) combined with resistance to ${\geq}2$ non-${\beta}$-lactam antimicrobials. Results: A total of 135 S. pneumoniae strains were isolated from adults during the study period. Twenty-one serotypes were identified with 17F, 15A, 3, 19A, and 11A, being the most common. The coverage rates of PCV10, and PCV13 were 17.8% and 37.8%, respectively. PCV13 serotypes decreased significantly from 68.4% in 2009 to 8.3% in 2016 (P = 0.002). The most important emerging non-PCV13 serotypes were 17F, 15A, and 11A, with 15A being strongly associated with antimicrobial resistance and MDR. Among all study isolates, penicillin-resistant and MDR strains represented 7.4% and 14.1%, respectively. Predominant PNSP serotypes were 19A (21.7%), 11A (17.4%), and 15A (17.4%). Erythromycin, clindamycin, tetracycline, trimethoprim-sulfamethoxazole, and levofloxacin resistant rates were 30.4%, 15.6%, 16.3%, 16.3%, and 1.5%, respectively. Conclusion: Although pneumococcal disease continues to be a health burden in adults in Crete, our study reveals a herd protection effect of the infant pneumococcal higher-valent conjugate vaccination. Surveillance of changes in serotype distribution and antimicrobial resistance among pneumococcal isolates are necessary to guide optimal prevention and treatment strategies.

Strategic construction of mRNA vaccine derived from conserved and experimentally validated epitopes of avian influenza type A virus: a reverse vaccinology approach

  • Leana Rich Herrera-Ong
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.156-171
    • /
    • 2023
  • Purpose: The development of vaccines that confer protection against multiple avian influenza A (AIA) virus strains is necessary to prevent the emergence of highly infectious strains that may result in more severe outbreaks. Thus, this study applied reverse vaccinology approach in strategically constructing messenger RNA (mRNA) vaccine construct against avian influenza A (mVAIA) to induce cross-protection while targeting diverse AIA virulence factors. Materials and Methods: Immunoinformatics tools and databases were utilized to identify conserved experimentally validated AIA epitopes. CD8+ epitopes were docked with dominant chicken major histocompatibility complexes (MHCs) to evaluate complex formation. Conserved epitopes were adjoined in the optimized mVAIA sequence for efficient expression in Gallus gallus. Signal sequence for targeted secretory expression was included. Physicochemical properties, antigenicity, toxicity, and potential cross-reactivity were assessed. The tertiary structure of its protein sequence was modeled and validated in silico to investigate the accessibility of adjoined B-cell epitope. Potential immune responses were also simulated in C-ImmSim. Results: Eighteen experimentally validated epitopes were found conserved (Shannon index <2.0) in the study. These include one B-cell (SLLTEVETPIRNEWGCR) and 17 CD8+ epitopes, adjoined in a single mRNA construct. The CD8+ epitopes docked favorably with MHC peptidebinding groove, which were further supported by the acceptable ∆Gbind (-28.45 to -40.59 kJ/mol) and Kd (<1.00) values. The incorporated Sec/SPI (secretory/signal peptidase I) cleavage site was also recognized with a high probability (0.964814). Adjoined B-cell epitope was found within the disordered and accessible regions of the vaccine. Immune simulation results projected cytokine production, lymphocyte activation, and memory cell generation after the 1st dose of mVAIA. Conclusion: Results suggest that mVAIA possesses stability, safety, and immunogenicity. In vitro and in vivo confirmation in subsequent studies are anticipated.

An Emergence of Equine-Like G3P[8] Rotaviruses Associated with Acute Gastroenteritis in Hospitalized Children in Thailand, 2016-2018

  • Chaiyaem, Thanakorn;Chanta, Chulapong;Chan-it, Wisoot
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.120-129
    • /
    • 2021
  • Rotavirus A (RVA) is recognized as a major etiology responsible for the development of acute gastroenteritis in children worldwide. The purpose of the present study was to perform the molecular characterization of RVA. A total of 323 stool specimens collected from hospitalized children with acute gastroenteritis in Chiang Rai, Thailand, in 2016-2018 were identified for G- and P-genotypes through RT-PCR analysis. RVA was more prevalent in 2017-2018 (37.8%) than in 2016-2017 (23.2%). The seasonal peak of RVA occurred from March to April. G3P[8] was predominant in 2016-2017 (90.6%) and 2017-2018 (58.6%). Other genotypes including G1P[8], G8P[8], G9P[8], and mixed infections were also identified. G3P[8] strains clustered together in the same lineage with other novel human equine-like G3P[8] strains previously identified in multiple countries and presented a genotype 2 constellation (G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2). Several amino acid differences were observed in the antigenic epitopes of the VP7 and VP8* capsid proteins of the equine-like G3P[8] compared with those of the RVA vaccine strains. The homology modeling of the VP7 and VP8* capsid proteins of the equine-like G3P[8] strains evidently exhibited that these residue differences were present on the surface-exposed area of the capsid structure. The emergence of the equine-like G3P[8] strains in Thailand indicates the rapid spread of strains with human and animal gene segments. Continuous surveillance for RVA is essential to monitor genotypes and genetic diversity, which will provide useful information for selecting rotavirus strains to develop a safe and effective RVA vaccine that is efficacious against multiple genotypes and variants.

Serotypes and Penicillin Susceptibility of Streptococcus pneumoniae Isolated from Clinical Specimens and Healthy Carriers of Korean Children (소아의 임상 검체 및 건강한 소아의 비인두에서 분리된 폐구균의 혈청형 및 페니실린 감수성)

  • Lee, Jin-A;Kim, Nam-Hee;Kim, Dong-Ho;Park, Ki-Won;Kim, Yun-Kyung;Kim, Kyoung-Hyo;Park, Jin-Young;Choi, Eun-Hwa;Lee, Hoan-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.9
    • /
    • pp.846-853
    • /
    • 2003
  • Purpose : Pneumoccocus is one of the most important causes of invasive infection through the childhood period and the prevelance of antibiotics resistance of pneumococcus is increasing worldwide. A 7-valent conjugate vaccine has been developed. It is important to know the prevalence of each serotype of pneumococci in the countries where the vaccine is used to estimate the coverage rate by the vaccine. Methods : One hundred and twenty seven strains of clinical isolates and 72 strains from healthy carriers recovered from Korean children during the period from 1997 to 2002 were subjected to determination of serotype by Quellung reaction and penicillin susceptibility with oxacillin disc diffusion test. Results : Forty-three per cent of clinical isolates were obtained from children under two years of age. Thirty strains(24%) were isolated from normally sterile body fluids. The frequent serotypes were 19F, 19A, 23F, 6A, 6B and 9V. Fifty-six per cent of the clinical isolates were represented in the current 7-valent protein conjugate pneumococccal vaccine, and 84% when the cross-reactive serotypes were included. Frequent serotypes of strains isolated from one to five year-old healthy children were 19F, 14, 11A, 23F, 18C, and 19A. Seventy-one per cent of the carrier strains were included in the 7-valent vaccine. Ninety-three per cent of the clinical isolates and 86% of carrier strains were not susceptible to penicilline. Conclusion : Fifty-six to 84% of pneumococci recovered from Korean children are covered by the current 7-valent protein conjugate pneumococcal vaccine and the prevalence of penicillin resistance was very high.

경구투여 백신 후보물질로서의 Helicobacter pylori 외막 단백질의 조사

  • 박형배;최태부
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 1997
  • Helicobacter pylori is a spiral-shaped, microaerophilic human gastric pathogen causing chronic-active gastritis in association with duodenal ulcer and gastric cancer. To investigate the possibility of H. pylori outer membrane proteins (OMPS) as the oral vaccine antigens, sarcosine-insoluble outer membrane fraction has been prepared from H. pylori NCTC 11637. The major OMPs having apparent molecular masses of 62 kDa, 54 kDa and 33 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which were identified as urease B subunit (UreB), heat shock protein (Hsp54 kDa) and urease A subunit (UreA), respectively. Minor protein bands of 57 kDa, 52 kDa, 40 kDa, 36 kDa and 31 kDa were also observed. The antigenicity of H. pylori OMPs and antigenic cross-reactivity among the strains were determined by immunoblot analysis using anti-H. pylori OMPs antisera or intestinal lavage solutions. The results showed that UreB, Hsp54 kDa, UreA and 40 kDa proteins vigorously stimulated mucosal immune response rather than systemic immunity. From this results, these proteins seemed to be useful as the antigen candidates for the oral vaccine. The immunoblotting results with surface proteins from eight isolated H. pylori strains were similar to that of H. pylori NCTC 11637. The IgA which had been arised from oral administration of H. pylori OMPs, was able to bind H. pylori whole-cells.

  • PDF

Expression of recombinant Bordetella pertussis filamentous hemagglutinin (FHA) antigen in Live Attenuated Salmonella typhimurium Vaccine Strain (약독화 Salmonella typhimurium 생백신 균주에서 Bordetella pertussis 의 filamentous hemagglutinin(F HA))

  • 강호영
    • Journal of Life Science
    • /
    • v.11 no.4
    • /
    • pp.385-391
    • /
    • 2001
  • Filamentous hemagglutinin (FHA) is considered as an essential immunogenic component for incorporation into acellular vaccines against Bordetella pertussis, the causative agent of whooping cough. Classically, antipertussis vaccination has employed an intramuscular route. An alternative approach to stimulate mucosal and systemic immune responses is oral immunization with recombinant live vaccine carrier strains of Salmonella typhimurium. An attenuated live Salmonella vaccine sgrain($\Delta$cya $\Delta$crp) expressing recombinant FHA(rFHA) was developed. Stable expressionof rFHA was achieved by the use of balanced-lethal vector-host system. which employs an asd deletion in the host chromosome to impose in obligate requirement for diaminopimelic acid. The chromosomal $\Delta$asd mutation was complemented by a plasmid vector possessing the asd$^{+}$ gene. A 3 kb DNA fragment encoding immuno dominant regionof FHA was subcloned in-frame downstream to the ATG translation initiation codon in the multicopy Asd$^{+}$ pYA3341 vector to create pYA3457. Salmonella vaccine harboring pYA3457 expressed approximately 105kDa rFHA protein. The 100% maintenance of [YA3457 in vaccine strain was confirmed by stability examinations. Additionally, a recombinant plasmid pYA3458 was constructed to overpress His(8X)-tagged rFHA in Essherichia coli. His-tagged rFHA was purified from the E. coli strain harboring pYA3458 using Ni$^{2+}$-NTA affinity purification system.>$^{2+}$-NTA affinity purification system.

  • PDF

Establishment of a live vaccine strain against fowl typhoid and paratyphoid

  • Cho, Sun-Hee;Ahn, Young-Jin;Kim, Tae-Eun;Kim, Sun-Joong;Huh, Won;Moon, Young-Sik;Lee, Byung-Hyung;Kim, Jae-Hong;Kwon, Hyuk Joon
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.4
    • /
    • pp.241-246
    • /
    • 2015
  • To develop a live vaccine strain against fowl typhoid and paratyphoid caused by Salmonella serovar Gallinarum biovar Gallinarum (Salmonella Gallinarum) and Salmonella serovar Enteritidis (Salmonella Enteritidis), respectively, several nalidixic acid resistant mutants were selected from lipopolysaccharide (LPS) rough strains of Salmonella Gallinarum that escaped from fatal infection of a LPS-binding lytic bacteriophage. A non-virulent and immunogenic vaccine strain of Salmonella Gallinarum, SR2-N6, was established through in vivo pathogenicity and protection efficacy tests. SR2-N6 was highly protective against Salmonella Gallinarum and Salmonella Enteritidis and safer than Salmonella Gallinarum vaccine strain SG 9R in the condition of protein-energy malnutrition. Thus, SR2-N6 may be a safe and efficacious vaccine strain to prevent both fowl typhoid and paratyphoid.

Improved Immune Response to Recombinant Influenza Nucleoprotein Formulated with ISCOMATRIX

  • Cargnelutti, Diego E.;Sanchez, Maria V.;Alvarez, Paula;Boado, Lorena;Glikmann, Graciela;Mattion, Nora;Scodeller, Eduardo A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.416-421
    • /
    • 2012
  • Current influenza vaccines elicit antibodies effective against homologous strains, but new strategies are urgently needed for protection against emerging epidemic or pandemic strains. Although influenza vaccine candidates based on the viral nucleoprotein (NP) or matrix protein do not elicit sterilizing immunity, they have the advantage of inducing immunity that may cover a larger number of viral strains. In this study, recombinant NP produced in Escherichia coli was purified and formulated in combination with the adjuvant ISCOMATRIX. This formulation increased a NP-specific immunity in mice, with a Th1 profile, and may constitute a promising low-cost influenza vaccine candidate, with ability to stimulate humoral and cellular immune responses.