• Title/Summary/Keyword: Vaccine production

Search Result 246, Processing Time 0.024 seconds

Generation of a High-Growth Influenza Vaccine Strain in MDCK Cells for Vaccine Preparedness

  • Kim, Eun-Ha;Kwon, Hyeok-Il;Park, Su-Jin;Kim, Young-Il;Si, Young-Jae;Lee, In-Won;Kim, Se mi;Kim, Soo-In;Ahn, Dong-Ho;Choi, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.997-1006
    • /
    • 2018
  • As shown during the 2009 pandemic H1N1 (A(H1N1)pdm09) outbreak, egg-based influenza vaccine production technology is insufficient to meet global demands during an influenza pandemic. Therefore, there is a need to adapt cell culture-derived vaccine technology using suspended cell lines for more rapid and larger-scale vaccine production. In this study, we attempted to generate a high-growth influenza vaccine strain in MDCK cells using an A/Puerto/8/1934 (H1N1) vaccine seed strain. Following 48 serial passages with four rounds of virus plaque purification in MDCK cells, we were able to select several MDCK-adapted plaques that could grow over $10^8PFU/ml$. Genetic characterization revealed that these viruses mainly had amino acid substitutions in internal genes and exhibited higher polymerase activities. By using a series of Rg viruses, we demonstrated the essential residues of each gene and identified a set of high-growth strains in MDCK cells ($PB1_{D153N}$, $M1_{A137T}$, and $NS1_{N176S}$). In addition, we confirmed that in the context of the high-growth A/PR/8/34 backbone, A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2), and A/environment/Korea/deltaW150/2006 (H5N1) also showed significantly enhanced growth properties (more than $10^7PFU/ml$) in both attached- and suspended-MDCK cells compared with each representative virus and the original PR8 vaccine strain. Taken together, this study demonstrates the feasibility of a cell culture-derived approach to produce seed viruses for influenza vaccines that are cheap and can be grown promptly and vigorously as a substitute for egg-based vaccines. Thus, our results suggest that MDCK cell-based vaccine production is a feasible option for producing large-scale vaccines in case of pandemic outbreaks.

Evaluation of Safety of Streptococcus pneumoniae DNA Vaccine in Immunopathological Aspect (폐렴구균 DNA 백신의 면역병리학적 측면에서의 안전성 평가)

  • Lee Jue-Hee;Han Yongmoon
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • We have previously reported the minimum criteria that can be applied to evaluate efficacy and safety of a DNA vaccine with use of Streptococcus pneumoniae DNA vaccine (SPDNA). The SPDNA was formulated by inserting the DNA sequences that are codons specific for the carbohydrate epitope in the capsule of S. penumoniae by phage display peptide library. Administration of the SPDNA into mice induced both humoral and cell-mediated immunities. The induction was protective even in the absence of CD4+ T lymphocyte in mice. Profiles of cytokine and isotyping of antibody displayed tendency of the Th1. In continuation of these studies, we examined if the efficacy of the SPNDA was provoked by the peptide recognized by codons specific for the capsule. Results showed that the peptide vaccine formulae (SPP) induced protective antibody in mice as did the SPDNA. Involvement of the cell-mediated immunity was also determined. Possible side effects of autoimmune diseases such as myositis and C3a production and tumor-formation were undetectable in mice given 7 times of SPDNA vaccination during entire of 92 days. Even after the frequent immunization, immunogenicity of the SPDNA was observed as determined for antibody production, suggesting that there was no immunotolerance provoked. All together, these examining factors would be applied to measurement of a DNA vaccine safety regarding the immunopathological aspect.

Phage Particles as Vaccine Delivery Vehicles: Concepts, Applications and Prospects

  • Jafari, Narjes;Abediankenari, Saeid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8019-8029
    • /
    • 2016
  • The development of new strategies for vaccine delivery for generating protective and long-lasting immune responses has become an expanding field of research. In the last years, it has been recognized that bacteriophages have several potential applications in the biotechnology and medical fields because of their intrinsic advantages, such as ease of manipulation and large-scale production. Over the past two decades, bacteriophages have gained special attention as vehicles for protein/peptide or DNA vaccine delivery. In fact, whole phage particles are used as vaccine delivery vehicles to achieve the aim of enhanced immunization. In this strategy, the carried vaccine is protected from environmental damage by phage particles. In this review, phage-based vaccine categories and their development are presented in detail, with discussion of the potential of phage-based vaccines for protection against microbial diseases and cancer treatment. Also reviewed are some recent advances in the field of phagebased vaccines.

Protection against virulent Brucella spp. by gamm-airradiated B. ovis in BALB/c mice model

  • Ayman Al-Mariri;Laila Al-Hallab;Rasha Alabras;Heba Kherbik;Marwa Khawajkiah
    • Clinical and Experimental Vaccine Research
    • /
    • v.11 no.1
    • /
    • pp.53-62
    • /
    • 2022
  • Purpose: Brucella spp. is a zoonosis that causes undulant fever in humans and abortion in livestock worldwide. Lately, it was conveyed that vaccines developed by irradiation have induced a strong cellular and humoral immune response which have made these types of vaccines highly effective. Materials and Methods: In this study, we aimed to use the gamma-irradiated B. ovis as a vaccine and to study the humoral immune response and cytokines production in order to evaluate it for protecting mice against B. abortus 544, B. melitensis 16M, and B. ovis. Results: The humoral immune response in immunized mice with gamma-irradiated B. ovis showed a lasting for 8 weeks after immunization. Moreover, immunoglobulin G (IgG), IgG1, IgG2a, and IgG2b isotypes antibodies against B. ovis were observed after 4 and 8 weeks of the last immunization. It was noticed that the production of tumor necrosis factor-α, interferon-γ, and interleukin (IL)-10 continued after 4 and 8 weeks by splenocytes from immunized BALB/c mice, while no production of IL-4 or IL-5 was observed. Conclusion: Our results indicate that the protection of BALB/c mice against B. melitensis 16M, B. abortus 544, and B. ovis was induced and the developed vaccine at our laboratory could stimulate similar protection to those induced by the traditional vaccine.

Comparison between of the Attenuated BR-Oka and the Wild Type Strain of Varicella Zoster Virus (VZV) on the DNA level

  • Lim, Sang-Min;Song, Seong-Won;Kim, Sang-Lin;Jang, Yoon-Jung;Kim, Ki-Ho;Kim, Hong-Jin
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.418-423
    • /
    • 2000
  • Oka strain VR-795 (Varicella Zoster Virus, VZV) of American Type Culture Collection (ATCC) has been used for chickenpox vaccine production. In order to use this strain for vaccine production, the strain must be identified and its stability must be confirmed. The identification of the Oka strain has been confirmed using Restriction Fragment Length Polymorphism (RFLP) and DNA sequence analysis of glycoprotein-II (gp-II). The amino acid sequences of Oka deduced from the DNA sequence of gp-II have changed at three amino acids against Ellen and at one amino acid against Webster. To prove the stability of the Oka strain during the passage, RFLP and DNA sequence analyses were also used with 11, 15 and 23 times of virus passage. We found that the Oka strain was stable at passages of up to 23 times, based on the RFLP and DNA sequence analyses. The confirmed Oka strain was renamed as BR-Oka for the purposes of chickenpox vaccine production.

  • PDF

Comparison of COVID-19 Vaccines Introduced in Korea

  • Lee, Chang-Gun;Lee, Dongsup
    • Biomedical Science Letters
    • /
    • v.28 no.2
    • /
    • pp.67-82
    • /
    • 2022
  • The prevalence of SARS-CoV-2 led to inconsistent public health policies that resulted in COVID-19 containment failure. These factors resulted in increased hospitalization and death. To prevent viral spread and achieve herd immunity, the only safe and effective measure is to provide to vaccinates. Ever since the release of the SARS-CoV-2 nucleotide sequence in January of 2020, research centers and pharmaceutical companies from many countries have developed different types of vaccines including mRNA, recombinant protein, and viral vector vaccines. Prior to initiating vaccinations, phase 3 clinical trials are necessary. However, no vaccine has yet to complete a phase 3 clinical trial. Many products obtained "emergency use authorization" from governmental agencies such as WHO, FDA etc. The Korean government authorized the use of five different vaccines. The viral vector vaccine of Oxford/AstraZeneca and the Janssen showed effectiveness of 76% and 66.9%, respectively. The mRNA vaccine of Pfizer-BioNTech and Moderna showed effectiveness of 95% and 94.1%, respectively. The protein recombinant vaccine of Novavax showed an effectiveness of 90.4%. In this review, we compared the characteristics, production platform, synthesis principles, authorization, protective effects, immune responses, clinical trials and adverse effects of five different vaccines currently used in Korea. Through this review, we conceptualize the importance of selecting the optimal vaccine to prevent the COVID-19 pandemic.

Exploring the experience of developing COVID-19 vaccines in Iran

  • Mostafa Ghanei;Ali Mohabattalab;Kiarash Fartash;Narjes Kolahchi;Alireza Khakdaman;Hooman Kaghazian;Abolfazl Bagheri
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Widespread public vaccination is one of the effective mechanisms to ensure the health and prevent deaths in societies. The coronavirus disease 2019 (COVID-19) vaccine is a stark instance in this regard. Vaccine development is a complex process requiring firm-level capabilities, various infrastructures, long-term planning, and stable and efficient policies. Due to the global demand for vaccines during the pandemic, the national capability to produce vaccines is critical. To this end, the current paper investigates influential factors, at the firm- and policylevel, in the COVID-19 vaccine development process in Iran. By adopting a qualitative research method and conducting 17 semi-structured interviews and analyzing policy documents, news, and reports, we extracted internal and external factors affecting the success and failure of a vaccine development project. We also discuss the characteristics of the vaccine ecosystem and the gradual maturity of policies. This paper draws lessons for vaccine development in developing countries at both firm and policy levels.

Large-Scale Production of Rotavirus VLP as Vaccine Candidate Using Baculovirus Expression Vector System (BEVS)

  • Park, Jin-Yong;Kim, Hun;Hwang, Hi-Ku;Lee, Su-Jeen;Kim, Hyun-Sung;Hur, Byung-Ki;Ryu, Yeon-Woo;An, Chang-Nam;Kim, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • Rotavirus virus-like particle (VLP) composed of VP2, VP6, and VP7 was expressed in the Baculovirus Expression Vector System (BEVS). Sf9 cell, a host of the baculovirus, was cultured from a 0.5-1 spinner flask to the 50-1 bioreactor system. Sf9 cell was maintained at cell density between 3.0E+05 and 3.0E+06 cells/ml and grew up to 1.12E+07 cells/ml in the bioreactor. Growth kinetics was compared under different culture systems and showed similar growth kinetics with 20.1-25.2 h of doubling time. Early exponentially growing cell culture was infected with three recombinant baculoviruses expressing VP2, VP6, and VP7 protein at 1.0, 2.0, and 0.2 moi, respectively. The expression of rotavirus proteins was confirmed by Western blot analysis and its three-layered virus-like structure was observed under an electron microscope. Rotavirus VLP was semipurified and immunized in ICR mice intramuscularly. Rotavirus-specific serum antibody was detected from 2 weeks after the immunization and lasted at least 21 weeks of the post-immunization, indicating its possible use as a vaccine candidate.

Evaluation of a Streptococcus pneumoniae DNA Vaccine Efficacy (폐렴구균 DNA 백신의 유효성 평가)

  • Lee Jue-Hee;Han Yongmoon
    • YAKHAK HOEJI
    • /
    • v.49 no.6
    • /
    • pp.484-489
    • /
    • 2005
  • Streptococcus pmeumoniae is the leading cause of pneumonia and bacterial meningitis. The current polysaccharide vaccine has been reported ineffective in elderly adults and children less than 2 years of age. Thus, in recent many researchers have been focused on a different approach, DNA vaccine. In our laboratory we developed a Streptococcus pneumoniae DNA (SPDNA) vaccine. This SPDNA vaccine was formulated by inserting the region encoding part of the capsule in the S. pneumoniae into the LAMP-1. In present work, with use of the SPDNA vaccine we attempted to establish a certain methodology useful for evaluation of effectiveness and immunoresponse of a DNA vaccine. Results showed that the subcutaneous route was the most effective for production of antisera specific for S. pneumoniae in mice. By isotyping analyses, IgM, IgGl, IgG2a, and IgG2b were determined. In addition, INF-$\gamma$ and IL-4 were predominantly detected. Combination of those data resulted in a pattern of IgGl < IgG2a=IgG2b and INF$\gamma\>$ >IL-4, which indicates the inmmunity towards the Thl response predominantly; furthermore, the SPDNA vaccination induced resistance of the CD4+T lymphocyte-depleted mice against disseminated pneumococcal infection. These data appear to be possibly due to activation of CDS8+T cell-activation. Taken together, this methodology can be applied for evaluating efficacy and mode of action of a DNA vaccine as minimum critera.

Production of Newcastle Disease Virus by Vero Cell Culture

  • Jeon, Ju-Mi;Jeon, Gye-Taek;Kim, Ik-Hwan;Lee, Sang-Jong;Jang, Yong-Geun;Jeong, Yeon-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.271-272
    • /
    • 2002
  • Newcastle disease virus (NDV) vaccines were produced from Vero cells by using lively attenuated virus strain. The MOI of 0.1.' serum concentration of 2%. initial pH of 8.0. and infection time of 3 days were found to be optimum conditions for vaccine production. The treatment of polycation enhanced the virus production. When ascorbic acid was added as an antioxidant, NDV production was also enhanced. Utilization of $CaCl_2$ showed an inhibitory effect on the propagation of NDV. It was also found the ammonium ion concentration higher than 4mM inhibited virus production. Thus ammonium ion removal system was tried for the efficient production of NDV vaccine.

  • PDF