Large-Scale Production of Rotavirus VLP as Vaccine Candidate Using Baculovirus Expression Vector System (BEVS)

  • Park, Jin-Yong (Vaccine Research Institute, GreenCross Vaccine Corp., Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Hun (Vaccine Research Institute, GreenCross Vaccine Corp., Department of Molecular Science and Technology, Ajou University) ;
  • Hwang, Hi-Ku (Vaccine Research Institute, GreenCross Vaccine Corp.) ;
  • Lee, Su-Jeen (Vaccine Research Institute, GreenCross Vaccine Corp.) ;
  • Kim, Hyun-Sung (Vaccine Research Institute, GreenCross Vaccine Corp., Department of Biotechnology and Bioengineering, Inha University) ;
  • Hur, Byung-Ki (Department of Biotechnology and Bioengineering, Inha University) ;
  • Ryu, Yeon-Woo (Department of Molecular Science and Technology, Ajou University) ;
  • An, Chang-Nam (Vaccine Research Institute, GreenCross Vaccine Corp.) ;
  • Kim, Jong-Soo (Vaccine Research Institute, GreenCross Vaccine Corp.)
  • Published : 2004.02.01

Abstract

Rotavirus virus-like particle (VLP) composed of VP2, VP6, and VP7 was expressed in the Baculovirus Expression Vector System (BEVS). Sf9 cell, a host of the baculovirus, was cultured from a 0.5-1 spinner flask to the 50-1 bioreactor system. Sf9 cell was maintained at cell density between 3.0E+05 and 3.0E+06 cells/ml and grew up to 1.12E+07 cells/ml in the bioreactor. Growth kinetics was compared under different culture systems and showed similar growth kinetics with 20.1-25.2 h of doubling time. Early exponentially growing cell culture was infected with three recombinant baculoviruses expressing VP2, VP6, and VP7 protein at 1.0, 2.0, and 0.2 moi, respectively. The expression of rotavirus proteins was confirmed by Western blot analysis and its three-layered virus-like structure was observed under an electron microscope. Rotavirus VLP was semipurified and immunized in ICR mice intramuscularly. Rotavirus-specific serum antibody was detected from 2 weeks after the immunization and lasted at least 21 weeks of the post-immunization, indicating its possible use as a vaccine candidate.

Keywords

References

  1. Bae, E.-A., M. J. Han, M.-J. Song, and D.-H. Kim. 2002. Purification of rotavirus infection-inhibitory protein from Bifidobacterium breve K-110. J. Microbiol. Biotechnol. 12(4): 553-556
  2. Bresee, J. S., I. G. Roger, I. Bernard, and R. G. Jon. 1999. Current status and future priorities for rotavirus vaccine development, evaluation and implementation in developing countries. Vaccine 17: 2207-2222
  3. Chang, E. J., K. M. Zangwill, H. Lee, and J. I. Ward. 2002. Lack of association between rotavirus infection and intussusception: Implications for use of attenuated rotavirus vaccines. Pediatr. Infect. Dis. J. 21: 97-102 https://doi.org/10.1097/00006454-200202000-00003
  4. Choi, E.-A., E. Kim, Y.-I. Oh, K.-S. Shin, H.-S. Kim, and C.-J. Kim. 2002. Expression of rotavirus capsid proteins VP6, and VP in mammalian cells using Semliki forest virusbased expression system. J. Microbiol. Biotechnol. 12: 463- 469
  5. Estes, M. K. and J. Cohen. 1989. Rotavirus gene structure and function. Microbiol. Rev. 53: 410-449
  6. Estes, M. K., S. E. Crawford, M. E. Penaranda, B. L. Petrie, J. W. Burns, W. K. Chan, B. Ericson, G. E. Smith, and M. D. Summers. 1989. Synthesis and immunogenecity of the rotavirus major capsid antigen using a baculovirus expression system. J. Virol. 61: 1488-1494
  7. Field, B. N., D. M. Knipe, and P. M. Howley. Virology. 3rd ed. pp. 533-556. Lippincott-Raven Publishers, Philadelphia. PA, U.S.A
  8. Forster, K. L. 1999. Withdrawal of rotavirus vaccine recommendation. M.M.W.R. 48(43): 1007
  9. Kirnbauer, R., J. Taub, H. Greenstone, R. Roden, M. Durst, L. Gissmann, D. R. Lowy, and J. T. Schiller. 1993. Efficient self-assembly of human papillomavirus type 16 L1 and L1- L2 into virus-like particles. J. Virol. 67: 6929-6936
  10. Kost, T. A. and J. P. Condreay. 2002. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trend Biotechnol. 20: 173-180
  11. Labbe, M., A. Charpilienne, S. E. Crawford, M. K. Estes, and J. Cohen. 1991. Expression of rotavirus VP2 produces empty corelike particles. J. Virol. 65: 2946-2952
  12. Maranga, L., P. Rueda, A. F. G. Antonis, C. Cela, J. P. M. Langeveld, J. I. Casal, and M. J. T. Carrondo. 2002. Large scale production and downstream processing of a recombinant porcine parvovirus vaccine. Appl. Microbiol. Biotechnol. 59: 45-50
  13. Parashar, U. D., J. S. Bresee, J. R. Gentsch, and R. I. Glass. Rotavirus. 1998. Emerg. Infect. Dis. 4: 561-570
  14. Redmond, M. J., M. K. Ijaz, M. D. Parker, M. I. Sabara, D. Dent, E. Gibbons, and L. A. Babiuk. 1993. Assembly of recombinant rotavirus proteins into virus-like particles and assessment of vaccine potential. Vaccine 11: 273-281
  15. Roger I. G., P. E. Kilgore, R. C. Holman, S. Jin, J. C. Smith, P. A. Woods, M. J. Clarke, M. S. Ho, and J. R. Gentsch. 1996. The epidemiology of rotavirus diarrhea in the United States: Surveillance and estimates of disease burden. J. Infect. Dis. 174(S1): S5-S11 https://doi.org/10.1093/infdis/174.Supplement_1.S5
  16. Schmid, G. 1996. Insect cell cultivation: Growth and kinetics. Cytotechnol. 20: 43-56
  17. Smith, G. E., M. D. Summers, and M. J. Fraser. 1983. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3: 2156-2165
  18. Sue, E. C., M. Labbe, J. Cohen, M. H. Burroughs, Y. J. Zhou, and M. K. Estes. 1994. Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J. Virol. 68: 5945-5952
  19. Vaughn, J. L., R. H. Goodwin, G. J. Tompkins, and P. McCawley. 1977. The establishment of two cell lines from the insect Spodoptera frugiperda b (Lepidopter; Noctuidae). In Vitro 13: 213