• Title/Summary/Keyword: Vaccine candidate

Search Result 135, Processing Time 0.024 seconds

Expression and Immunogenicity of SARS-CoV-2 Virus-Like Particles based on Recombinant Truncated HEV-3 ORF2 Capsid Protein

  • Zhou, Yong-Fei;Nie, Jiao-Jiao;Shi, Chao;Ning, Ke;Cao, Yu-Feng;Xie, Yanbo;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1335-1343
    • /
    • 2022
  • COVID-19 is an emerging disease that poses a severe threat to global public health. As such, there is an urgent demand for vaccines against SARS-CoV-2, the virus that causes COVID-19. Here, we describe a virus-like nanoparticle candidate vaccine against SARS-CoV-2 produced by an E. coli expression system. The fusion protein of a truncated ORF2-encoded protein of aa 439~608 (p170) from hepatitis E virus CCJD-517 and the receptor-binding domain of the spike protein from SARS-CoV-2 were expressed, purified and characterized. The antigenicity and immunogenicity of p170-RBD were evaluated in vitro and in Kunming mice. Our investigation revealed that p170-RBD self-assembled into approximately 24 nm virus-like particles, which could bind to serum from vaccinated people (p < 0.001) and receptors on cells. Immunization with p170-RBD induced the titer of IgG antibody vaccine increased from 14 days post-immunization and was significantly enhanced after a booster immunization at 28 dpi, ultimately reaching a peak level on 42 dpi with a titer of 4.97 log10. Pseudovirus neutralization tests showed that the candidate vaccine induced a strong neutralizing antibody response in mice. In this research, we demonstrated that p170-RBD possesses strong antigenicity and immunogenicity and could be a potential candidate for use in future SARS-CoV-2 vaccine development.

Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondii based on calcium-dependent protein kinases antigens through an in-silico analysis

  • Ali Dalir Ghaffari;Fardin Rahimi
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.146-154
    • /
    • 2024
  • Purpose: Infection by the intracellular apicomplexan parasite Toxoplasma gondii has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world's population is infected with T. gondii, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against T. gondii using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5. Materials and Methods: Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct's N-terminal to increase the immunogenicity. Then, the vaccine's physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted. Results: The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against T. gondii parasite. Conclusion: In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.

Construction and Preliminary Immunobiological Characterization of a Novel, Non-Reverting, Intranasal Live Attenuated Whooping Cough Vaccine Candidate

  • Cornford-Nairns, R.;Daggard, G.;Mukkur, T.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.856-865
    • /
    • 2012
  • We describe the construction and immunobiological properties of a novel whooping cough vaccine candidate, in which the aroQ gene, encoding 3-dehydroquinase, was deleted by insertional inactivation using the kanamycin resistance gene cassette and allelic exchange using a Bordetella suicide vector. The aroQ B. pertussis mutant required supplementation of media to grow but failed to grow on an unsupplemented medium. The aroQ B. pertussis mutant was undetectable in the trachea and lungs of mice at days 6 and 12 post-infection, respectively. Antigen-specific antibody isotypes IgG1 and IgG2a, were produced, and cell-mediated immunity [CMI], using interleukin-2 and interferon-gamma as indirect indicators, was induced in mice vaccinated with the aroQ B. pertussis vaccine candidate, which were substantially enhanced upon second exposure to virulent B. pertussis. Interleukin-12 was also produced in the aroQ B. pertussis-vaccinated mice. On the other hand, neither IgG2a nor CMI-indicator cytokines were produced in DTaP-vaccinated mice, although the CMI-indicator cytokines became detectable post-challenge with virulent B. pertussis. Intranasal immunization with one dose of the aroQ B. pertussis mutant protected vaccinated mice against an intranasal challenge infection, with no pathogen being detected in the lungs of immunized mice by day 7 post-challenge. B. pertussis aroQ thus constitutes a safe, non-reverting, metabolite-deficient vaccine candidate that induces both humoral and cell-mediated immune responses with potential for use as a single-dose vaccine in adolescents and adults, in the first instance, with a view to disrupting the transmission cycle of whooping cough to infants and the community.

New Molecules in Babesia gibsoni and Their Application for Diagnosis, Vaccine Development, and Drug Discovery

  • Goo, Youn-Kyoung;Xuan, Xuenan
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.4
    • /
    • pp.345-353
    • /
    • 2014
  • Babesia gibsoni is an intraerythrocytic apicomplexan parasite that causes piroplasmosis in dogs. B. gibsoni infection is characterized clinically by fever, regenerative anemia, splenomegaly, and sometimes death. Since no vaccine is available, rapid and accurate diagnosis and prompt treatment of infected animals are required to control this disease. Over the past decade, several candidate molecules have been identified using biomolecular techniques in the authors' laboratory for the development of a serodiagnostic method, vaccine, and drug for B. gibsoni. This review article describes newly identified candidate molecules and their applications for diagnosis, vaccine production, and drug development of B. gibsoni.

Large-Scale Production of Rotavirus VLP as Vaccine Candidate Using Baculovirus Expression Vector System (BEVS)

  • Park, Jin-Yong;Kim, Hun;Hwang, Hi-Ku;Lee, Su-Jeen;Kim, Hyun-Sung;Hur, Byung-Ki;Ryu, Yeon-Woo;An, Chang-Nam;Kim, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • Rotavirus virus-like particle (VLP) composed of VP2, VP6, and VP7 was expressed in the Baculovirus Expression Vector System (BEVS). Sf9 cell, a host of the baculovirus, was cultured from a 0.5-1 spinner flask to the 50-1 bioreactor system. Sf9 cell was maintained at cell density between 3.0E+05 and 3.0E+06 cells/ml and grew up to 1.12E+07 cells/ml in the bioreactor. Growth kinetics was compared under different culture systems and showed similar growth kinetics with 20.1-25.2 h of doubling time. Early exponentially growing cell culture was infected with three recombinant baculoviruses expressing VP2, VP6, and VP7 protein at 1.0, 2.0, and 0.2 moi, respectively. The expression of rotavirus proteins was confirmed by Western blot analysis and its three-layered virus-like structure was observed under an electron microscope. Rotavirus VLP was semipurified and immunized in ICR mice intramuscularly. Rotavirus-specific serum antibody was detected from 2 weeks after the immunization and lasted at least 21 weeks of the post-immunization, indicating its possible use as a vaccine candidate.

The protective efficacy of the enterotoxigenic Escherichia coli vaccine candidate by GI24 against neonatal piglet colibacillosis

  • Choi, Yeong Hwan;Moon, Ja Young;Seo, Byoung Joo;Kim, Won Kyung;Cho, Jeong Sang;Choi, Min Su;Lim, Jae Sam;Kim, Sung Bok;Kim, Won Il;Hur, Jin
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.4
    • /
    • pp.235-244
    • /
    • 2017
  • Enterotoxigenic Escherichia coli (ETEC) strains producing each F4, F5, F6 and F41 fimbriae were lysed by GI24 peptide. The lysate cells were used as ETEC vaccine candidate. This study was carried out to examine whether intramuscular (im) immunization of pregnant sows with the novel vaccine candidate could effectively protect their neonatal piglets against ETEC colibacillosis. All pregnant sows were primed at 11 weeks and were boosted at 14 weeks of pregnancy. Group A sows were im inoculated with PBS. Group B sows were im immunized with $2{\times}10^9$ the mixture. Seral IgG, colostral IgA and IgG titers from group B sows, and seral IgG and IgA levels in group B piglets were significantly higher than those of group A sows and piglets, respectively. After challenge with wild-type ETEC, diarrhea and mortality was not observed in group B piglets. However, diarrhea was observed in 66.7% of group A piglets, and 33.3% mortality was observed. These findings indicate that im immunization of sows with the mixture of the novel vaccine candidate can effectively protect their offspring from ETEC colibacillosis.

Comparative evaluation to select optimal adjuvant of novel type Salmonella Typhimurium inactivated bacteria for protecting Salmonella infections in a murine model (마우스에서 살모넬라 감염증 예방을 위한 신개념 Salmonella Typhimurium 불활화 사균체에 최적 adjuvant 선택을 위한 효능 비교 시험)

  • Moon, Ja-Young;Ochirkhuyag, Enkhsaikhan;Kim, Won-Kyong;Lee, Jun-Woo;Jo, Young-Gyu;Kwak, Kil Han;Park, Byung Yong;Hur, Jin
    • Korean Journal of Veterinary Service
    • /
    • v.43 no.2
    • /
    • pp.89-97
    • /
    • 2020
  • This study was carried out to examine a novel inactivated Salmonella Typhimurium (S. Typhimurium) vaccine candidate for protection of mice against salmonellosis by immunization of BALB/c mice using various type adjuvant. The novel type-inactivated vaccine candidate was constructed by adding Chlorhexidine digluconate solution. BALB/c mice were divided into 6 groups of 15 mice apiece. The mice were intramuscularly (IM) primed at 6 weeks of age and were IM boosted 8 weeks of age. Groups A and B mice were injected with sterile phosphate-buffered saline as controls; group C mice were inoculated with 5×108 cells/100 µL of formalin-inactivated S. Typhimurium cells and adjuvant ISA70; groups D~F mice were immunized with 5×108 cells/100 µL of the inactivated vaccine candidate and adjuvant ISA70, adjuvant IMS1313 and adjuvant IMS1313 containing 30 ㎍/mL of GI24, respectively. All mice (except group A mice) were orally challenged with a virulent S. Typhimurium strain at 10 weeks of age. Mice from groups C-F had significantly increased IgG levels compared to control groups (A-B) mice. The levels of splenocyte IFN-γ and IL-4 in mice of all groups were measured by ELISA, resulting in increased immunity in group F mice compared to those of groups A-E mice. These data suggested that systemic and cell-mediated immune responses were highly induced by IM immunization with the vaccine candidate and adjuvant IMS1313 containing GI24. Furthermore, clinical signs such as death were observed in only 20% of group F mice after virulent Salmonella strain challenge, however, groups B and C (100%), and groups D and E (60%) mice died. This data suggested that mice immunized by intramuscular prime and booster with this vaccine candidate and adjuvant IMS1313 containing GI24 effectively protected mice from salmonellosis.

Immunogenicity and Protective Efficacy of a Dual Subunit Vaccine Against Respiratory Syncytial Virus and Influenza Virus

  • Park, Min-Hee;Chang, Jun
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.261-268
    • /
    • 2012
  • Respiratory syncytial virus (RSV) and influenza virus are the most significant pathogens causing respiratory tract diseases. Composite vaccines are useful in reducing the number of vaccination and confer protection against multiple infectious agents. In this study, we generated fusion of RSV G protein core fragment (amino acid residues 131 to 230) and influenza HA1 globular head domain (amino acid residues 62 to 284) as a dual vaccine candidate. This fusion protein, Gcf-HA1, was bacterially expressed, purified by metal resin affinity chromatography, and refolded in PBS. BALB/c mice were intranasally immunized with Gcf-HA1 in combination with a mucosal adjuvant, cholera toxin (CT). Both serum IgG and mucosal IgA responses specific to Gcf and HA1 were significantly increased in Gcf-HA1/CT-vaccinated mice. To determine the protective efficacy of Gcf-HA1/CT vaccine, immunized mice were challenged with RSV (A2 strain) or influenza virus (A/PR/8/34). Neither detectable viral replication nor pathology was observed in the lungs of the immune mice. These results demonstrate that immunity induced by intranasal Gcf-HA1/CT immunization confers complete protection against both RSV and homologous influenza virus infection, suggesting our Gcf-HA1 vaccine candidate could be further developed as a dual subunit vaccine against RSV and influenza virus.

Individual expression and processing of hepatitis C virus E1/E2 epitopes-based DNA vaccine candidate in healthy humans' peripheral blood mononuclear cells

  • Rola Nadeem;Amany Sayed Maghraby;Dina Nadeem Abd-Elshafy;Ahmed Barakat Barakat;Mahmoud Mohamed Bahgat
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.1
    • /
    • pp.47-59
    • /
    • 2023
  • Purpose: The development and study of hepatitis C virus (HCV) vaccine candidates' individualized responses are of great importance. Here we report on an HCV DNA vaccine candidate based on selected envelope (E1/E2) epitopes. Besides, we assessed its expression and processing in human peripheral blood mononuclear cells (PBMCs) and in vivo cellular response in mice. Materials and Methods: HCV E1/E2 DNA construct (EC) was designed. The antigen expression of EC was assayed in PBMCs of five HCV-uninfected donors via a real-time quantitative polymerase chain reaction. Serum samples from 20 HCV antibody-positive patients were used to detect each individual PBMCs expressed antigens via enzyme-linked immunosorbent assay. Two groups, five Swiss albino mice each, were immunized with the EC or a control construct. The absolute count of lymph nodes' CD4+ and CD8+ T-lymphocytes was assessed. Results: Donors' PBMCs showed different levels of EC expression, ranging between 0.83-2.61-fold in four donors, while donor-3 showed 34.53-fold expression. The antigens expressed in PBMCs were significantly reactive to the 20 HCV antibody repertoire (all p=0.0001). All showed comparable reactivity except for donor-3 showing the lowest reactivity level. The absolute count % of the CD4+ T-cell significantly increased in four of the five EC-immunized mice compared to the control group (p=0.03). No significant difference in CD8+ T-cells % was observed (p=0.89). Conclusion: The inter-individual variation in antigen expression and processing dominance was evident, showing independence in individuals' antigen expression and reactivity levels to antibodies. The described vaccine candidate might result in a promising natural immune response with a possibility of CD4+ T-cell early priming.