• Title/Summary/Keyword: VUV emission

Search Result 43, Processing Time 0.029 seconds

Effects on Addition of Metal Oxides with Low Workfunctions on the Ca-Sr-Ba Oxide Cathodes for VUV Ionizers (VUV 이오나이저용 Ca-Sr-Ba계 산화물 캐소드에 낮은 일함수를 갖는 금속산화물 첨가의 영향)

  • Park, Seung-Kyu;Lee, Jonghyuk;Kim, Ran Hee;Jung, Juhyoung;Han, Wan Gyu;Lee, Soo Huan;Jeon, Sung Woo;Kim, Dae Jun;Kim, Do-Yun;Lee, Kwang-Sup
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.241-251
    • /
    • 2019
  • There are several manufacturing techniques for developing thermionic cathodes for vacuum ultraviolet(VUV) ionizers. The triple alkaline earth metal emitters(Ca-Sr-Ba) are formulated as efficient and reliable thermo-electron sources with a great many different compositions for the ionizing devices. We prepare two basic suspensions with different compositions: calcium, strontium and barium. After evaluating the electron-emitting performance for europium, gadolinium, and yttrium-based cathodes mixed with these suspensions, we selected the yttrium for its better performance. Next, another transition metal indium and a lanthanide metal neodymium salt is introduced to two base emitters. These final composite metal emitters are coated on the tungsten filament and then activated to the oxide cathodes by an intentionally programmed calcination process under an ultra-high vacuum(${\sim}10^{-6}torr$). The performance of electron emission of the cathodes is characterized by their anode currents with respect to the addition of each element, In and Nd, and their concentration of cathodes. Compared to both the base cathodes, the electron emission performance of the cathodes containing indium and neodymium decreases. The anode current of the Nd cathode is more markedly degraded than that with In.

Binary and ternary gas mixtures of He-Ne-Xe for improvement of vacuum ultraviolet luminous efficiency in ac-PDPs.

  • Jung, Kyu-Bong;Lee, Jun-Ho;Park, Won-Bae;Jeon, Wook;Oh, Phil-Young;Cho, Guang-Sup;Uhm, Han-Sup;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.522-524
    • /
    • 2004
  • The improvement of luminance and luminous efficiency is the one of the most important part in AC-PDPs. To achieve high luminance and luminous efficiency, high VUV emission efficiency is needed. We measured the emission spectra of vacuum ultraviolet(VUV) rays in surface discharge AC-PDP with binary and ternary gas mixtures of Ne-Xe and He-Ne-Xe. The influence of He-Ne-Xe gas-mixture ratio on excited $Xe^{\ast}$ resonant atoms and $Xe_2$$^{\ast}$ dimers has been investigated. It is found that luminous efficiency of ternary gas mixture, He-Ne-Xe, is shown to be much higher than that of binary gas mixture of Ne-Xe.

  • PDF

Synthesis and Optical Characteristics of Green-Emitting (Mg,Zn)$Al_2O_4:Mn^{2+}$ Phosphor for 3D- PDP Applications

  • Han, Bo-Yong;Yoo, Jae-Soo;Heo, Eun-Gi;Yoo, Young-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.272-275
    • /
    • 2009
  • A new green phosphor, ($Mg_{1-x-yZnx)$)$Al_2O_4:Mn^{2+}{_y}$ (0 x 0.6, 0.001 y 0.01), was synthesized by a flux-assisted solid reaction and its vacuum ultraviolet (VUV) excitation and emission characteristics were examined in this study. The chromaticity and peak intensity of the $(Mg_{0.79}Zn_{0.2})Al_2O_4:Mn^{2+}{_{0.01}}$ (x = 0.177, y = 0.745) phosphor were found to be more desirable than that of $Zn_2SiO_4:Mn^{2+}$ (x = 0.216, y = 0.72) phosphor as a green primary color.

  • PDF

Discharge Dynamics of AC Plasma Display Panel

  • Whang, Ki-Woong;Seo, Jeong-Hyun;Yoon, Cha-Keun;Chung, Woo-Joon;Kim, Joong-Kyun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.53-57
    • /
    • 1999
  • To investigate the discharge dynamics of alternating current plasma display panel (ACPDP), we measured the spatio-temporally resolved VUV and IR emission by an intensified charge coupled device (CCD). The breakdown beings around the anode inner edge and moves towards the cathode surface. As the ionization intensifies in front of the cathode surface, another emission region appears on the anode surface. While the anode side emission does not move but grows, the cathode side emission moves out and spreads over the entire cathode surface. The discharge dynamics emission by a 2 dimensional numerical simulation suggests that a cathode-directed streamer formation play an important role.

  • PDF

Synthesis of Barium Hexaaluminate Phosphros Using Combinatorial Chemistry (조합화학을 이용한 망간(2+)과 유로피움)2+)이 첨가된 Barium Hexaaluminate 형광체의 합성 및 광특성 분석)

  • 박응석;최윤영;손기선;김창해;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.134-139
    • /
    • 2000
  • The main objective of the present investigation is to show the feasibility of combinatorial chemistry by applying this method to phosphor syntehses. In this respect barium hexaaluminate phosphor was prepared by the split-pool combinatorial method, which enabled much more rapid search of optimum compositions of target phosphors than conventional synthetic methods. Barium hexaaluminate phosphors doped with Eu2+ exhibit blue emission while those co-doped with Mn2+ and Eu2+ exhibit green emission. Basically, the phosphor doped with 1.3 mole of Ba and 0.06~0.15 mole of Eu2+ exhibit the maximum value of emission intensity at 435${\mu}{\textrm}{m}$. Under the UV and VUV extitations, the barium hexaaluminate phosphor co-doped with Mn2+ and Eu2+ shows strong green emission.

  • PDF

Luminescence Properties of Zn2SiO4:Mn, M(M=Cr, Ti) Green Phosphors Prepared by Sol-gel Method (졸-겔법으로 제조한 Zn2SiO4:Mn, M(M=Cr, Ti) 녹색 형광체의 발광특성)

  • 안중인;한정화;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.637-643
    • /
    • 2003
  • In order to improve the photoluminescent properties and crystallinity, Zn$_2$SiO$_4$:Mn, M(M=Cr, Ti) phosphors were synthesized by the sol-gel method. The willemite single phase was obtained at 110$0^{\circ}C$, which is lower temperature than that of the conventional solid-state reaction (130$0^{\circ}C$). The characteristics of fired samples were obtained by a 147 nm excitation source under VUV (Vacuum Ultraviolet). To investigation the effect of co-dopant, the content of Mn and the ratio of $H_2O$ to TEOS was fixed as 2 ㏖% and 36. 1, respectively. The highest emission intensity was obtained when the concentration of Cr and Ti was 0.1 ㏖% relative to Zn$_2$SiO$_4$:Mn. While the emission intensity decrease continuously the decay time improved as increased the Cr concentration. In the case of Ti added samples, however, the emission intensity increase up to 2 ㏖% concentration.

Effect of Dy addition on $Zn_2SiO_4:Tb$ green Phosphor ($Zn_2SiO_4:Tb$ 녹색 형광체의 Dy 첨가 효과)

  • Im, Won-Bin;Kang, Jong-Hyuk;Lee, Dong-Chin;Jeon, Duk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.968-971
    • /
    • 2003
  • Due to a low efficiency of phosphor with large Stoke shift in Vacuum Ultra Violet (VUV) excitation environment, new PDP phosphors which can be excited in UV excitation environment need to be developed. In this study, $Zn_2SiO_4:Tb$ phosphor was synthesized by solid-state reaction method at $1300^{\circ}C$ with varying Tb concentration, and its cross relaxation effect was observed by Photoluminescence (PL) measurement. In order to decrease $^5D_3{\to}7F_j$ transition with blue emission in $Zn_2SiO_4:Tb$ phosphor, Dy, co-activator element, was added to $Zn_2SiO_4:Tb$ phosphor. In 254nm excitation environment, broad-emission peak was observed around 524nm, green emission.

  • PDF

Enhancement of Photoluminescence by Ag Localized Surface Plasmon Resonance for Ultraviolet Detection

  • Lyu, Yanlei;Ruan, Jun;Zhao, Mingwei;Hong, Ruijin;Lin, Hui;Zhang, Dawei;Tao, Chunxian
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • For higher sensitivity in ultraviolet (UV) and even vacuum ultraviolet (VUV) detection of silicon-based sensors, a sandwich-structured film sensor based on Ag Localized Surface Plasmon Resonance (LSPR) was designed and fabricated. This film sensor was composed of a Ag nanoparticles (NPs) layer, SiO2 buffer and fluorescence layer by physical vapour deposition and thermal annealing. By tuning the annealing temperature and adding the SiO2 layer, the resonance absorption wavelength of Ag NPs matched with the emission wavelength of the fluorescence layer. Due to the strong plasmon resonance coupling and electromagnetic field formed on the surface of Ag NPs, the radiative recombination rate of the luminescent materials and the number of fluorescent molecules in the excited state increased. Therefore, the fluorescent emission intensity of the sandwich-structured film sensor was 1.10-1.58 times at 120-200 nm and 2.17-2.93 times at 240-360 nm that of the single-layer film sensor. A feasible method is provided for improving the detection performance of UV and VUV detectors.

The characteristics of AC-PDPs According to binary and ternary gas mixtures of He-Ne-Xe_

  • Lee, H.J.;Son, C.G.;Lee, S.B.;Han, Y.K.;Jeoung, S.H.;You, N.L.;Lim, J.E.;Lee, J.H.;Moon, M.W.;Oh, P.Y.;Jeoung, J.M.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1195-1198
    • /
    • 2005
  • The improvement of efficiency is the one of the most important part in AC PDPs . To achieve high efficiency, high VUV emission efficiency and High ion induces secondary electron emission coefficient are needed. We have measured the emission spectra of vacuum ultraviolet rays and ion induced secondary electron emission coefficient of MgO protective layer in surface discharge AC-PDP with binary and ternary gas mixtures. We have investigated electro-optical characteristics of AC-PDPs to optimum gas mixture for high efficient.

  • PDF

VUV luminescence properties of a novel green-emitting $(Y,Gd)Ga_3(BO_3)_4$:Tb phosphor

  • Moon, Young-Min;Choi, Sung-Ho;Lim, Sang-Ho;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1561-1564
    • /
    • 2007
  • $Tb^{3+}-activated$ green-emitting $(Y,Gd)Ga_3(BO_3)_4$ phosphor has been investigated. The main absorption was in the $120{\sim}238$ nm and exhibited a green emission with the 545 nm and several peaks due to inner shell transition of $Tb^{3+}$ ion. With the optimized $Tb^{3+}$ concentrations, the maximum emission brightness was 90% of the $Zn_2SiO_4$:Mn phosphor.

  • PDF