• Title/Summary/Keyword: VSMCs

Search Result 81, Processing Time 0.03 seconds

Dendropanax morbifera Extract Inhibits Intimal Hyperplasia in Balloon-Injured Rat Carotid Arteries by Modulating Phenotypic Changes in Vascular Smooth Muscle Cells

  • Lim, Leejin;Jo, Juyeong;Yoon, Sang Pil;Jang, Inyoub;Ki, Young-Jae;Choi, Dong-Hyun;Song, Heesang
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.71-78
    • /
    • 2020
  • The plant Dendropanax morbifera Léveille is effective folk medicines for the treatment of several conditions, such as infectious diseases, skin diseases, and other illnesses. Although the inhibitory effects of D. morbifera on the proliferation and migration of vascular smooth muscle cells (VSMCs) have been shown in our previous study, its effects in vivo remain to be elucidated. In this study, we aimed to investigate the protective effects of the extracts from D. morbifera (EDM) on neointimal hyperplasia of rat carotid artery and explore the underlying mechanisms. We observed that the ratio of intima to media thickness (I/M) was significantly decreased in the EDM-treated groups by ~80% compared to that of the control. The expression of Ki-67 and proliferating cell nuclear antigen was decreased by ~70% in the EDM-treated groups compared to that of the control. In addition, matrix metalloproteinase (MMP)2 and MMP9 significantly reduced in the neointimal layer of the EDM-treated groups. Moreover, the decreased levels of contractile phenotypic markers of VSMCs, such as α-smooth muscle actin, myocardin, and smooth muscle-myosin heavy chain, were successfully restored by EDM treatment. Furthermore, the levels of synthetic phenotypic markers, cellular retinal binding protein 1 and connexin 43 were also restored to normal levels. These results suggest that EDM inhibits vascular neointimal hyperplasia induced by balloon injury in rats via phenotypic modulation of VSMCs. Therefore, EDM may be a potential drug candidate for the prevention of restenosis.

WD Repeat Domain 1 Deficiency Inhibits Neointima Formation in Mice Carotid Artery by Modulation of Smooth Muscle Cell Migration and Proliferation

  • Hu, JiSheng;Pi, ShangJing;Xiong, MingRui;Liu, ZhongYing;Huang, Xia;An, Ran;Zhang, TongCun;Yuan, BaiYin
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.749-762
    • /
    • 2020
  • The migration, dedifferentiation, and proliferation of vascular smooth muscle cells (VSMCs) are responsible for intimal hyperplasia, but the mechanism of this process has not been elucidated. WD repeat domain 1 (WDR1) promotes actin-depolymerizing factor (ADF)/cofilin-mediated depolymerization of actin filaments (F-actin). The role of WDR1 in neointima formation and progression is still unknown. A model of intimal thickening was constructed by ligating the left common carotid artery in Wdr1 deletion mice, and H&E staining showed that Wdr1 deficiency significantly inhibits neointima formation. We also report that STAT3 promotes the proliferation and migration of VSMCs by directly promoting WDR1 transcription. Mechanistically, we clarified that WDR1 promotes the proliferation and migration of VSMCs and neointima formation is regulated by the activation of the JAK2/STAT3/WDR1 axis.

Murrayafoline A Induces a G0/G1-Phase Arrest in Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells

  • Han, Joo-Hui;Kim, Yohan;Jung, Sang-Hyuk;Lee, Jung-Jin;Park, Hyun-Soo;Song, Gyu-Yong;Nguyen, Manh Cuong;Kim, Young Ho;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.421-426
    • /
    • 2015
  • The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of platelet-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophysiological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated progression through $G_0/G_1$ to S phase of the cell cycle, as measured by [$^3H$]-thymidine incorporation assay and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle progression at $G_0/G_1$ phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that murrayafoline A may be useful in preventing the progression of vascular complications such as restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis.

Trichostatin A Modulates Angiotensin II-induced Vasoconstriction and Blood Pressure Via Inhibition of p66shc Activation

  • Kang, Gun;Lee, Yu Ran;Joo, Hee Kyoung;Park, Myoung Soo;Kim, Cuk-Seong;Choi, Sunga;Jeon, ByeongHwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.467-472
    • /
    • 2015
  • Histone deacetylase (HDAC) has been recognized as a potentially useful therapeutic target for cardiovascular disorders. However, the effect of the HDAC inhibitor, trichostatin A (TSA), on vasoreactivity and hypertension remains unknown. We performed aortic coarctation at the inter-renal level in rats in order to create a hypertensive rat model. Hypertension induced by abdominal aortic coarctation was significantly suppressed by chronic treatment with TSA (0.5 mg/kg/day for 7 days). Nicotinamide adenine dinucleotide phosphate-driven reactive oxygen species production was also reduced in the aortas of TSA-treated aortic coarctation rats. The vasoconstriction induced by angiotensin II (Ang II, 100 nM) was inhibited by TSA in both endothelium-intact and endothelium-denuded rat aortas, suggesting that TSA has mainly acted in vascular smooth muscle cells (VSMCs). In cultured rat aortic VSMCs, Ang II increased p66shc phosphorylation, which was inhibited by the Ang II receptor type I ($AT_1R$) inhibitor, valsartan ($10{\mu}M$), but not by the $AT_2R$ inhibitor, PD123319. TSA ($1{\sim}10{\mu}M$) inhibited Ang II-induced p66shc phosphorylation in VSMCs and in HEK293T cells expressing $AT_1R$. Taken together, these results suggest that TSA treatment inhibited vasoconstriction and hypertension via inhibition of Ang II-induced phosphorylation of p66shc through $AT_1R$.

Endothelial dysfunction induces atherosclerosis: increased aggrecan expression promotes apoptosis in vascular smooth muscle cells

  • Kim, Sang-Min;Huh, Jae-Wan;Kim, Eun-Young;Shin, Min-Kyung;Park, Ji-Eun;Kim, Seong Who;Lee, Wooseong;Choi, Bongkun;Chang, Eun-Ju
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.145-150
    • /
    • 2019
  • Endothelial dysfunction-induced lipid retention is an early feature of atherosclerotic lesion formation. Apoptosis of vascular smooth muscle cells (VSMCs) is one of the major modulating factors of atherogenesis, which accelerates atherosclerosis progression by causing plaque destabilization and rupture. However, the mechanism underlying VSMC apoptosis mediated by endothelial dysfunction in relation to atherosclerosis remains elusive. In this study, we reveal differential expression of several genes related to lipid retention and apoptosis, in conjunction with atherosclerosis, by utilizing a genetic mouse model of endothelial nitric oxide synthase (eNOS) deficiency manifesting endothelial dysfunction. Moreover, eNOS deficiency led to the enhanced susceptibility against pro-apoptotic insult in VSMCs. In particular, the expression of aggrecan, a major proteoglycan, was elevated in aortic tissue of eNOS deficient mice compared to wild type mice, and administration of aggrecan induced apoptosis in VSMCs. This suggests that eNOS deficiency may elevate aggrecan expression, which promotes apoptosis in VSMC, thereby contributing to atherosclerosis progression. These results may facilitate the development of novel approaches for improving the diagnosis or treatment of atherosclerosis.

Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression

  • Hu, Yanchao;Zhang, Chunyan;Fan, Yajie;Zhang, Yan;Wang, Yiwen;Wang, Congxia
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.519-530
    • /
    • 2022
  • Recent research indicates that lactate promotes the switching of vascular smooth muscle cells (VSMCs) to a synthetic phenotype, which has been implicated in various vascular diseases. This study aimed to investigate the effects of lactate on the VSMC phenotype switch and the underlying mechanism. The CCK-8 method was used to assess cell viability. The microRNAs and mRNAs levels were evaluated using quantitative PCR. Targets of microRNA were predicted using online tools and confirmed using a luciferase reporter assay. We found that lactate promoted the switch of VSMCs to a synthetic phenotype, as evidenced by an increase in VSMC proliferation, mitochondrial activity, migration, and synthesis but a decrease in VSMC apoptosis. Lactate inhibited miR-23b expression in VSMCs, and miR-23b inhibited VSMC's switch to the synthetic phenotype. Lactate modulated the VSMC phenotype through downregulation of miR-23b expression, suggesting that overexpression of miR-23b using a miR-23b mimic attenuated the effects of lactate on VSMC phenotype modulation. Moreover, we discovered that SMAD family member 3 (SMAD3) was the target of miR-23b in regulating VSMC phenotype. Further findings suggested that lactate promotes VSMC switch to synthetic phenotype by targeting SMAD3 and downregulating miR-23b. These findings suggest that correcting the dysregulation of miR-23b/SMAD3 or lactate metabolism is a potential treatment for vascular diseases.

Differentially expressed mRNAs and their upstream miR-491-5p in patients with coronary atherosclerosis as well as the function of miR-491-5p in vascular smooth muscle cells

  • Ding, Hui;Pan, Quanhua;Qian, Long;Hu, Chuanxian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.183-193
    • /
    • 2022
  • MicroRNAs (miRNAs) regulate gene expression and are biomarkers for coronary atherosclerosis (AS). A novel miRNA-mRNA regulation network of coronary AS still needs to be disclosed. The aim of this study was to analyze potential mRNAs in coronary AS patients and the role of their upstream miR-491-5p in vascular smooth muscle cells (VSMCs). We first confirmed top ten mRNAs according to the analysis from Gene Expression Omnibus database (GSE132651) and examined the expression levels of them in the plaques and serum from AS patients. Five mRNAs (UBE2G2, SLC16A3, POLR2C, PNO1, and AMDHD2) presented significantly abnormal expression in both plaques and serum from AS patients, compared with that in the control groups. Subsequently, they were predicted to be targeted by 11 miRNAs by bioinformatics analysis. Among all the potential upstream miRNAs, only miR-491-5p was abnormally expressed in the plaques and serum from AS patients. Notably, miR-491-5p overexpression inhibited viability and migration, and significantly increased the expression of contractile markers (α-SMA, calponin, SM22α, and smoothelin) in VSMCs. While silencing miR-491-5p promoted viability and migration, and significantly suppressed the expression of α-SMA, calponin, SM22α, and smoothelin. Overall, miR-491-5p targeted UBE2G2, SLC16A3, and PNO1 and regulated the dysfunctions in VSMCs.

Vascular Smooth Muscle Cells Secrete CXCL10 in Response to Heat Shock Protein 90 (혈관평활근세포에서 HSP90에 의한 CXCL10 증가에 관여하는 인자에 대한 연구)

  • Rhim, Byung-Yong;Kim, Do-Hyung;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.664-670
    • /
    • 2011
  • Oxidative stress results in sustained release of heat shock protein 90 (HSP90) from vascular smooth muscle cells (VSMCs). We investigated whether extracellular HSP90 predisposed VSMCs to pro-inflammatory phenotype. Exposure of human aortic smooth muscle cells to HSP90 not only significantly enhanced CXCL10 secretion but also increased CXCL10 transcription. HSP90-mediated CXCL10 secretion was attenuated by OxPAPC, a TLR-2/4 inhibitor, and curcumin, a TLR-4 dimerization inhibitor. Inhibitors of diphenyleneiodium chloride and the Akt pathway also attenuated CXCL10 secretion in response to HSP90. The gene delivery of I${\kappa}$B using recombinant adenoviruses and treatment with resveratrol, which inhibit NF-${\kappa}$B activity, significantly attenuated HSP90-induced CXCL10 secretion from VSMCs. We propose that extracellular HSP90 contributes to an inflammatory reaction in the stressed vasculature by inducing CXCL10 expression of VSMCs, and that TLR-4, Akt, and NF-${\kappa}$B play active roles in the process.

Fluvastatin inhibits advanced glycation end products-induced proliferation, migration, and extracellular matrix accumulation in vascular smooth muscle cells by targeting connective tissue growth factor

  • Hwang, Ae-Rang;Nam, Ju-Ock;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.193-201
    • /
    • 2018
  • Connective tissue growth factor (CTGF) is a novel fibrotic mediator, which is considered to mediate fibrosis through extracellular matrix (ECM) synthesis in diabetic cardiovascular complications. Statins have significant immunomodulatory effects and reduce vascular injury. We therefore examined whether fluvastatin has anti-fibrotic effects in vascular smooth muscle cells (VSMCs) and elucidated its putative transduction signals. We show that advanced glycation end products (AGEs) stimulated CTGF mRNA and protein expression in a time-dependent manner. AGE-induced CTGF expression was mediated via ERK1/2, JNK, and Egr-1 pathways, but not p38; consequently, cell proliferation and migration and ECM accumulation were regulated by CTGF signaling pathway. AGE-stimulated VSMC proliferation, migration, and ECM accumulation were blocked by fluvastatin. However, the inhibitory effect of fluvastatin was restored by administration of CTGF recombinant protein. AGE-induced VSMC proliferation was dependent on cell cycle arrest, thereby increasing G1/G0 phase. Fluvastatin repressed cell cycle regulatory genes cyclin D1 and Cdk4 and augmented cyclin-dependent kinase inhibitors p27 and p21 in AGE-induced VSMCs. Taken together, fluvastatin suppressed AGE-induced VSMC proliferation, migration, and ECM accumulation by targeting CTGF signaling mechanism. These findings might be evidence for CTGF as a potential therapeutic target in diabetic vasculature complication.

Blockade of Urotensin II Receptor Prevents Vascular Dysfunction

  • Kim, Young-Ae;Lee, Dong Gil;Yi, Kyu Yang;Lee, Byung Ho;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.523-528
    • /
    • 2016
  • Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of aortic SMCs. In rat aorta, UII-induced vasoconstriction was significantly inhibited by KR-36676 in a concentration-dependent manner. In primary human aortic SMCs (hAoSMCs), UII-induced cell proliferation was significantly inhibited by KR-36676 in a concentration-dependent manner. In addition, KR-36676 decreased UII-induced phosphorylation of ERK, and UII-induced cell proliferation was also significantly inhibited by a known ERK inhibitor U0126. In mouse carotid ligation model, intimal thickening of carotid artery was dramatically suppressed by oral treatment with KR-36676 (30 mg/kg/day) for 4 weeks compared to vehicle-treated group. From these results, it is indicated that KR-36676 suppress UII-induced proliferation of VSMCs at least partially through inhibition of ERK activation, and that it also attenuates UII-induced vasoconstriction and vascular neointima formation. Our study suggest that KR-36676 may be an attractive candidate for the pharmacological management of vascular dysfunction.