• Title/Summary/Keyword: VSI

Search Result 305, Processing Time 0.035 seconds

Modeling and Control of VSI type FACTS controllers for Power System Dynamic Stability using the current injection method

  • Park, Jung-Soo;Jang, Gil-Soo;Son, Kwang-M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper describes modeling Voltage Sourced Inverter (VSI) type Flexible AC Transmission System (FACTS) controllers and control methods for power system dynamic stability studies. The considered FACTS controllers are the Static Compensator (STATCOM), the Static Synchronous Series Compensator (SSSC), and the Unified Power Flow Controller (UPFC). In this paper, these FACTS controllers are derived in the current injection model, and it is applied to the linear and nonlinear analysis algorithm for power system dynamics studies. The parameters of the FACTS controllers are set to damp the inter-area oscillations, and the supplementary damping controllers and its control schemes are proposed to increase damping abilities of the FACTS controllers. For these works, the linear analysis for each FACTS controller with or without damping controller is executed, and the dynamic characteristics of each FACTS controller are analyzed. The results are verified by the nonlinear analysis using the time-domain simulation.

Switching properties of bivariate Shewhart control charts for monitoring the covariance matrix

  • Gwon, Hyeon Jin;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1593-1600
    • /
    • 2015
  • A control chart is very useful in monitoring various production process. There are many situations in which the simultaneous control of two or more related quality variables is necessary. We construct bivariate Shewhart control charts based on the trace of the product of the estimated variance-covariance matrix and the inverse of the in-control matrix and investigate the properties of bivariate Shewart control charts with VSI procedure for monitoring covariance matrix in term of ATS (Average time to signal) and ANSW (Average number of switch) and probability of switch, ASI (Average sampling interval). Numerical results show that ATS is smaller than ARL. From examining the properties of switching in changing covariances and variances in ${\Sigma}$, ANSW values show that it does not switch frequently and does not matter to use VSI procedure.

Vector Control of Induction Motor Drive Using Photovoltaic Generation (태양광 발전을 이용한 유도전동기 드라이브의 벡터제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.307-310
    • /
    • 2008
  • This paper is proposed the vector control of 3-phase induction motor drive system by photovoltaic generation. For performance of vector control using a current control voltage source inverter(CC-VSI). CC-VSI is controlled by torque and flux producing component of motor current, relating with current and voltage value of photovoltaic arrays at maximum power point that varies follow different level of insolation. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage($V_{dq}$), current($I_{dq}$), speed of motor and torque.

  • PDF

A New Study on Indirect Vector AC Current Control Method Using a Matrix Converter Fed Induction Motor

  • Lee Hong-Hee;Nguyen Hoang M.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • This paper introduces two different types of AC current control methods for an indirect vector controlled induction motor using a matrix converter. The proposed methods combine the advantages of matrix converters with the advantages of the indirect vector AC current control methods. The first proposed method explains the basic idea of the hysteresis current control method for matrix converters and shows its capability and stability in comparison to the conventional method usually used for VSI. With the aid of the special configuration of the matrix converter, we also propose another current method which is modified from the first one in order to reduce both current ripple and torque ripple. Simulation results have verified the feasibility and the effectiveness of the proposed methods.

Impoved Performance of Sensorless Induction Motor Drive in Low Speed Range Using Variable Link Voltage (가변 링크전압에 의한 센서리스 유도전동기의 저속운전 성능개선)

  • 김상균;권영안
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.90-98
    • /
    • 2004
  • Variable-speed drives are being continually innovated. Recently, sensorless induction motor drives have been much studied due to several advantages. Most sensorless algorithms are based on the mathematical modeling of motors, and all the information is obtained from the monitored voltages and currents. Therefore, the accuracy of such variables largely affects the performance of a sensorless induction motor drive. However, the output voltage of the SVPWM-VSI which is widely used in a sensorless induction motor drive has a considerable error, especially in a low speed range. This paper proposes a variation of the dc link voltage as a high-performance strategy for overcoming the above problem. The proposed strategy leads to an improved resolution of the output voltage of the SVPWM-VSI in a sensorless induction motor drive. Simulation and experiment have been performed for the verification of the proposed strategy.

Control of a Three-Phase Voltage Source Inverter using Model Predictive Control of Laguerre Functions

  • Cho, Uk-Rae;Cha, Wang-Cheol;Park, Joung-Ho;Shin, Ho-Jeon;Kim, Jae-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.40-46
    • /
    • 2015
  • This paper presents a method of controlling a three-phase VSI (Voltage Source Inverter) using MPC (Model Predictive Control) designed using Laguerre functions. It also provides a model of the three-phase VSI and its resistive-inductive load and then an overview of MPC design using Laguerre functions. The biggest challenge in using MPC is the high number of computations involved, which makes online implementation difficult. On the other hand, the LMPC (Laguerre Model Predictive Control) reduces the number of computations made and so online implementation becomes possible where traditional MPC would be unteneble. The simulation results from MATLAB are also provided.

New Control Strategy for Conventional VSI in Islanded Microgrid to Enhance Voltage Quality under Nonlinear Loads

  • Dam, Duy-Hung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.351-352
    • /
    • 2015
  • This paper proposed a new control strategy for voltage source inverter (VSI) of effective fifth and seventh harmonic reduction in the point of common coupling (PCC) in islanded microgrid under nonlinear load without any additional hardware devices. The non-linear load regularly causes such harmonic distortion, which harmfully affect the performance of other loads or other distributed generation (DG) sources connect to the PCC. In order to improve the quality of delivered output voltage, these harmonic must be rejected. The proposed control strategy is developed based on the current controller formed by resonant controller parallel with a proportional integral controller, which perform on the fundamental reference frame. The reference current is estimated based on the voltage harmonic and the injecting power. The simulation and experimental results are shown to verify the effectiveness of proposed control method.

  • PDF

Operational Characteristics of Grid-Interactive Distributed Generation System with Voltage-controlled VSI (전압제어형 VSI를 적용한 계통연계형 분산전원시스템의 동작특성)

  • Kang, Dae-Up;Cho, Sung-Phil;Ko, Sung-Hun;Lee, Seong-Ryong;Lee, Su-Won;Mun, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1151-1152
    • /
    • 2007
  • 본 논문에서는 전력품질개선, 부하수요관리, 무정전전원공급, 부하전압안정화 등의 기능을 통합적으로 수행할 수 있는 전압제어형 전압원인버터(VCVSI: Voltage-Controlled Voltage Source Inverter)를 적용한 계통연계형 분산전원시스템의 제어 알고리즘을 제안하였다. 제안 된 시스템은 계통, 신재생에너지원(또는 배터리) 그리고 부하조건에 따라 3가지 모드(전력품질개선모드. 부하수요관리모드, 무정전전원공급모드)에 따라 동작한다. 본 연구에서는 각각의 모드에 따른 동작특성을 분석하고, 시뮬레이션을 통해 그 유용성을 확인하였다.

  • PDF

PSCAD/EMTDC Based Modeling of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 이용한 계통연계형 태양광발전시스템의 모델링)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.204-207
    • /
    • 2004
  • The paper proposes a simulation model of grid-connected photovoltaic generation system (PV system) using on PSCAD/EMTDC, a reliable power system and apparatus transient analysis program. A equivalent circuit model of a solar cell is used for modeling solar array. A series of parameters required for array modeling are deduced from general specification data of a solar module. A PWM voltage source inverter (VSI) model is presented and current control scheme is implemented for VSI control. A maximum power point tracking (MPPT) technique is applied for controlling the PV system. Simulation case study provides V-I and V-P characteristics of solar array and PV system control performance for irradiation changes.

  • PDF

Optimum Hybrid SVPWM Technique for Three-level Inverter on the Basis of Minimum RMS Flux Ripple

  • Nair, Meenu D.;Biswas, Jayanta;Vivek, G.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.413-430
    • /
    • 2019
  • This paper presents an optimum hybrid SVPWM technique for three-level voltage source inverters (VSIs). The proposed hybrid SVPWM technique aims to minimize total harmonic distortion (THD). A new parameter is introduced to incorporate the heterogeneous nature of switching sequences of SVPWM technique. The proposed hybrid SVPWM technique is implemented on a low-cost PIC microcontroller (PIC18F452) and verified experimentally with a 2 KVA three-phase three-level insulated gate bipolar transistor-based VSI. Optimum switching sequence results in the three-level inverter configuration are demonstrated. The proposed hybrid SVPWM technique improves the THD performance by 17.3% compared with the best available three-level SVPWM technique.