• Title/Summary/Keyword: VQ Codebook

Search Result 84, Processing Time 0.027 seconds

Text Independent Speaker Identification Using Separate Matrix Quantization (분할 매트릭스 부호화를 이용한 문장 독립형 화자인식 시스템)

  • 경연정;이황수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.69-72
    • /
    • 1998
  • 본 논문에서는 문장독립형 화자인식 시스템에 MQ(Matrix Quantization) 방법 사용 을 제안한다. 또한 인식율을 높이기 위해 MQ를 수정한 방법인 SMQ(Separated Matrix Quantization)을 제안한다. 기존의 VQ-distortion 방법은 대체로 좋은 성능을 가지나 화자의 동적 특성을 이용하지 못한다는 단점이 있다. MQ와 SMQ는 화자의 동적 특성을 이용할 수 있으므로 시간 변화에 대한 화자의 특징 변화까지 모델링 할 수 있는 장점이 있다. MQ는 여러 프레임을 묶어 Matrix Codebook을 가지며 SMQ는 MQ의 기본 codebook을 다시 켑스 트럼의 차수에 따라 나누어 codebook을 만든다. 즉, 켑스트럼 차수를 저, 중, 고차로 나누어 각 부분별로 Matrix codebook을 만들도록 한다. 인식실험은 문장독립 음성 데이터에 대해 실행했으며 MQ모델의 경우 Matrix의 크기를 짧은 음소크기부터 음절단위까지 변화시켜 실 험하였다. 아울러 SMQ 모델에서의 실험은 차수별 유용도를 보기 위하여 부분 차수를 이용 하여 실험하였다. 실험결과 MQ와 SMQ방법이 VQ에 비해 좋은 성능을 가짐을 확인하였다.

  • PDF

Multi-table Vector Quantizer for Image Coding at Low Rates (저 전송율에서의 영상 부호화를 위한 멀티테이블 벡터 양자화기)

  • 전준현;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.2
    • /
    • pp.108-120
    • /
    • 1989
  • The paper describes a new algorithm for reducing the edge degradation of a vector quantization(VQ) in low rates. This algorithm exploits several codebooks, one of which is adaptively selected by standard deviation(SD) of the vector currently being coded. Also, SD search method for reducing the complexity of codebook search is proposed. As a result, a proposed VQ has good performance anout 30 dB PSNR in the 0.4-0.7 bpp range.

  • PDF

Fast VQ Codebook Design by Sucessively Bisectioning of Principle Axis (주축의 연속적 분할을 통한 고속 벡터 양자화 코드북 설계)

  • Kang, Dae-Seong;Seo, Seok-Bae;Kim, Dai-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.422-431
    • /
    • 2000
  • This paper proposes a new codebook generation method, called a PCA-Based VQ, that incorporates the PCA (Principal Component Analysis) technique into VQ (Vector Quantization) codebook design. The PCA technique reduces the data dimensions by transforming input image vectors into the feature vectors. The cluster of feature vectors in the transformed domain is bisectioned into two subclusters by an optimally chosen partitioning hyperplane. We expedite the searching of the optimal partitioning hyperplane that is the most time consuming process by considering that (1) the optimal partitioning hyperplane is perpendicular to the first principal axis of the feature vectors, (2) it is located on the equilibrium point of the left and right cluster's distortions, and (3) the left and right cluster's distortions can be adjusted incrementally. This principal axis bisectioning is successively performed on the cluster whose difference of distortion between before and after bisection is the maximum among the existing clusters until the total distortion of clusters becomes as small as the desired level. Simulation results show that the proposed PCA-based VQ method is promising because its reconstruction performance is as good as that of the SOFM (Self-Organizing Feature Maps) method and its codebook generation is as fast as that of the K-means method.

  • PDF

An Algorithm for Fast Searching of VQ Codebook (VQ 코드북의 빠른 검색을 위한 알고리즘)

  • 이강성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.50-53
    • /
    • 1991
  • 벡터 양지화(VQ)는 신호 처리분야에서 정보의 압축을 위해 사용하는 아주 잘 알려진 방법이다. 벡터 양지화는 정보를 대량으로 줄이면서 그 효율을 떨어 뜨리지 않는 방향으로 발전해 왔다. VQ코드북의 크기가 커지면 하나의 코드워드를 찾기위한 시간이 증가하게 된다. 코드북의 빠른 검색을 위하여 다른 방법에 제안 되기도 했으나 최적 검색 방법이라고는 볼 수 없다. 본 고에서는 음성인식에 적용할 목적으로 기존의 방법으로 구성된 코드북의 구성을 변형 하지 않고 검색 속도를 증가 시킬 수 있는 방법을 기수랗고 그 효율에 대해서 설명한다.

  • PDF

Motion Search Region Prediction using Neural Network Vector Quantization (신경 회로망 벡터 양자화를 이용한 움직임 탐색 영역의 예측)

  • Ryu, Dae-Hyun;Kim, Jae-Chang
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.161-169
    • /
    • 1996
  • This paper presents a new search region prediction method using vector quantization for the motion estimation. We find motion vectors using the full search BMA from two successive frame images first. Then the motion vectors are used for training a codebook. The trained codebook is the predicted search region. We used the unsupervised neural network for VQ encoding and codebook design. A major advantage of formulating VQ as neural networks is that the large number of adaptive training algorithm that are used for neural networks can be applied to VQ. The proposed method reduces the computation and reduce the bits required to represent the motion vectors because of the smaller search points. The computer simulation results show the increased PSNR as compared with the other block matching algorithms.

  • PDF

Vector Quantization for Medical Image Compression Based on DCT and Fuzzy C-Means

  • Supot, Sookpotharom;Nopparat, Rantsaena;Surapan, Airphaiboon;Manas, Sangworasil
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.285-288
    • /
    • 2002
  • Compression of magnetic resonance images (MRI) has proved to be more difficult than other medical imaging modalities. In an average sized hospital, many tora bytes of digital imaging data (MRI) are generated every year, almost all of which has to be kept. The medical image compression is currently being performed by using different algorithms. In this paper, Fuzzy C-Means (FCM) algorithm is used for the Vector Quantization (VQ). First, a digital image is divided into subblocks of fixed size, which consists of 4${\times}$4 blocks of pixels. By performing 2-D Discrete Cosine Transform (DCT), we select six DCT coefficients to form the feature vector. And using FCM algorithm in constructing the VQ codebook. By doing so, the algorithm can make good time quality, and reduce the processing time while constructing the VQ codebook.

  • PDF

A Classified Space VQ Design for Text-Independent Speaker Recognition (문맥 독립 화자인식을 위한 공간 분할 벡터 양자기 설계)

  • Lim, Dong-Chul;Lee, Hanig-Sei
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.673-680
    • /
    • 2003
  • In this paper, we study the enhancement of VQ (Vector Quantization) design for text independent speaker recognition. In a concrete way, we present a non-iterative method which makes a vector quantization codebook and this method performs non-iterative learning so that the computational complexity is epochally reduced The proposed Classified Space VQ (CSVQ) design method for text Independent speaker recognition is generalized from Semi-noniterative VQ design method for text dependent speaker recognition. CSVQ contrasts with the existing desiEn method which uses the iterative learninE algorithm for every traininE speaker. The characteristics of a CSVQ design is as follows. First, the proposed method performs the non-iterative learning by using a Classified Space Codebook. Second, a quantization region of each speaker is equivalent for the quantization region of a Classified Space Codebook. And the quantization point of each speaker is the optimal point for the statistical distribution of each speaker in a quantization region of a Classified Space Codebook. Third, Classified Space Codebook (CSC) is constructed through Sample Vector Formation Method (CSVQ1, 2) and Hyper-Lattice Formation Method (CSVQ 3). In the numerical experiment, we use the 12th met-cepstrum feature vectors of 10 speakers and compare it with the existing method, changing the codebook size from 16 to 128 for each Classified Space Codebook. The recognition rate of the proposed method is 100% for CSVQ1, 2. It is equal to the recognition rate of the existing method. Therefore the proposed CSVQ design method is, reducing computational complexity and maintaining the recognition rate, new alternative proposal and CSVQ with CSC can be applied to a general purpose recognition.

A Study on Single Vowels Recognition using VQ and Multi-layer Perceptron (VQ와 Multi-layer perceptron을 이용한 단모음 인식에 관한 연구)

  • 안태옥;이상훈;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 1993
  • 본 논문은 불특정 화자의 단모음 인식에 관한 연구로써, VQ(Vectro Quantization)와 MLP(multi-layer perceptron)에 의한 음성 인식 방법을 제안한다. 이 방법은 VQ codebook을 구하고 이를 이용해서 관측열(observation sequence)을 구해각 codeword가 데이터로부터 가질 수 있는 확률값을 계산하여 이 값을 신경 회로망의 입력으로 사용하는 방법이다. 인식 대상으로는 한국어 단모음을 선정하였으며 10명의 남성 화자가 8개의 단모음을 10번씩 발음한 것으로 시스템의 효율성을 알아보기 위해 VQ/HMM(hidden markov model)에 의한 인식과 비교 실험한다. 실험 결과에 의하면, 시스템의 단순성에도 불구하고 학습능력애 뛰어난 관계로 VQ/HMM보다 VQ와 MLP에 의한 음성 인식률이 향상됨을 보여준다.

  • PDF

Fast Codebook Search for Vector Quantization in Image Coding (영상 부호화를 위한 벡터 양자화기에서의 고속 탐색 기법)

  • 고종석;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.4
    • /
    • pp.302-308
    • /
    • 1988
  • The paper describes a very simple algorithm for reducing the encoding complexity of vector quantization(VQ), exploiting the feature of a vector currently being encoded. A proposed VQ of 16(=4x4) vector dimension shows a slight performance degradation of about 0.1-1.9dB, however, with only 16-32 among 256 codeword searches, i.e., with just 1/16-1/8 search complexity compared to a full-search VQ. And the proposed VQ scheme is also compared to outperform tree-search VQ with regard to their SNR performance and memory requirement.

  • PDF

VQ Design Algorithm Using Modified Codebook Updating Method (개선된 부호책 갱신 방법을 이용한 VQ 학습 알고리즘)

  • 백성준;최용진;이주헌;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.72-75
    • /
    • 1998
  • 본 논문에서는 기존에 제시된 수정된 K-평균 방법을 이용한 VQ 학습 알고리즘을 분석하고, 보다 개선된 성능을 보이는 학습 알고리즘을 제안한다. 수정된 K-평균 학습 알고 리즘은 자기 집단에 속하는 데이터의 중심을 데이터의 중심을 새로운 코드워드로 삼는 것이 아니라 현재 코드워드와 새로 구한 집단의 중심을 연결한 선상에서 새로 구한 중심 너머의 일정한 점을 새로운 코드워드로 선택하는 방식이다. 본 논문에서는 이렇게 구한 새로운 코 드워드가 어떠한 조건을 만족할 때 알고리즘이 반복적 감소의 성질을 가지는지 살펴보고, 그 조건을 만족시키는 영역 중 기존의 방식보다 더 좋은 성능을 보이는 코드워드 선택법을 제시함으로써 개선된 학습 알고리즘을 제안한다.

  • PDF