• Title/Summary/Keyword: VOLUMETRIC SOIL MOISTURE

Search Result 38, Processing Time 0.028 seconds

Analysis of Sensors' Behavior and Its Utility for Shallow Landslide Early Warning through Model Slope Collapse Experiment (붕괴모의실험을 통한 산사태 조기경보용 계측센서의 반응성 분석 및 활용성 고찰)

  • Kang, Minjeng;Seo, Junpyo;Kim, Dongyeob;Lee, Changwoo;Woo, Choongshik
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.208-215
    • /
    • 2019
  • The goal of this study was to analyze the reactivity of a volumetric water content sensor (soil moisture sensor) and tensiometer and to review their use in the early detection of a shallow landslide. We attempted to demonstrate shallow and rapid slope collapses using three different soil ratios under artificial rainfall at 120 mm/h. Our results showed that the measured value of the volumetric water-content sensor converged to 30~37%, and that of the tensiometer reached -3~-5 kPa immediately before the collapse of the soil under all three conditions. Based on these results, we discussed a temporal range for early warnings of landslides using measurements of the volumetric water content sensors installed at the bottom of the soil slope, but could not generalize and clarify the exact timing for these early warnings. Further experiments under various conditions are needed to determine how to use both sensors for the early detection of shallow landslides.

A Study on the Volume Change in Unsaturated Clayey Soil (불포화 정성토의 체적변화에 대한 연구)

  • Chang, Pyoung-Wuck;Gil, Sang-Choon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.37-42
    • /
    • 1998
  • This study was performed to evaluate the characteristics of volume change is unsaturated clayed soil. The medium-plastic clay was selected and compacted by 50% of Proctor standard compaction energy at 6% higher moisture content than its OMC. A series of isotropic compression tests and triaxial shear tests were performed. The results of the study are summarized as follows. At each matric suction, when the matric suction was increased, the yield stress was increased and slope of volume change was decreased. The more net mean stress was, the less the quantity of volume change was. In shear test, the volumetric strain was much rapidly changed in large matric than in low matric suctions. But the effect of matric suction to volume change disappeared under high net mean stress. At lower deviator stress the more matric suction was, the higher volume change was. But As the matric suction was increasing, the behavior of the unsaturated clayey soil was similar to that of saturated clayey soil. Volume change in the unsaturated clayey soil can be represented as a unique plane in three-dimensional space, which is the axes of net mean stress, matric suction and void ratio.

  • PDF

Growth Response on the Euonymus fortunei 'Emelad' n 'Gold' as affected by Artificial Plantings Soil Properties during Dry Spring Season (봄철 건조기 용기형 벽면녹화에서 식재지반 조성에 따른 황금줄사철의 적응성)

  • Ju, Jin-Hee;Kim, Hea-Ran;Park, Heon;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1299-1305
    • /
    • 2014
  • For evaluating the effect of various artificial planting soil properties on the Euonymus fortunei 'Emelad'n Gold' growth, a container green wall system experiment was conducted in a wall of greenhouse at Konkuk University, Glocal campus. The experimental artificial planting grounds were prepared with different organic soil conditioner ratios (Control, $A_4O_1$, $A_2O_1$ and $A_1O_1$) and with drought tolerance and an ornamental value Euonymus fortunei 'Emelad'n Gold' was planted. The soil and plant characteristics were investigated from April to Jun 2010. The volumetric soil moisture contents were significantly increasing order as the amount of organic soil conditioner level increased in order to $A_1O_1$ > $A_2O_1$ > $A_4O_1$ > Control. At 4 treatment, soil chemical properties were inversely related to organic soil container ratios increase. The differences of root collar caliper, number of branch, and survival rate between the organic soil conditioner ratio were not significantly affected by organic soil conditioner. But, plant height, internode length, leaf length and leaf width were significantly shorter on plants planted $A_1O_1$ than plants planted other treatments. Therefore, Euonymus fortunei 'Emelad'n Gold' had good growth response regardless of organic soil conditioner ratio and the plant is expected to be a highly valuable shrub for the green wall system if it should be considered in integration with stormwater retention or as a soil conditioner for increasing soil water contents in artificial planting soil.

Water Use Efficiency of Barley, Wheat and Millet Affected by Groundwater Table under Lysimeter (라이시미터에서 지하수위에 따른 보리, 밀, 조의 수분이용효율 특성)

  • Kim, Beom-Ki;Gong, Hyo-Young;Shim, Jae-Sig;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.253-259
    • /
    • 2010
  • This experiment was conducted to evaluate water use efficiency of barley, wheat, and millet as a substitution crop for rice of fallow paddy field. Dry weight (DW), evapotranspiration, and transpiration of crop grown on the lysimeters controlled with 5 levels of groundwater table (GWT), 0, 25, 50, 75, and 100 cm were evaluated for optimum GWT and water use efficiency. All the lysimeters randomized with four replication arrangements were filled up sandy loam and were adjusted to the constant bulk density treated with twice water infiltration from bottom side to upper side of lysimeter. DW of barley, wheat, and millet in the plot of 0cm GWT that is saturated soil showed 34.9%, 44.7%, and 37.1% of that in the plot of 100 cm GWT, respectively showing a serious obstacle in crop growth. Evapotranspiration ratios calculated by evapotranspiration volume (mL) per DW were 166~605 mL for barley, 136~481 mL for wheat, and 81~418 mL for millet showing the order of barley > wheat > millet. Evapotranspiration ratio was increased with decrease of groundwater table that is the condition of moisture saturation. Estimation of GWT for maximum DW of wheat was 76 cm, and those of barley and millet were 100 cm below. The volumetric moisture content of lysimeter soil with cropping was markedly decreased as increase of crop growth because moisture supplying capability by capillary rise of water was less than amount of moisture required by crop.

An Experimental Study on the Engineering Characteristics Analysis of Unsaturated Weathered Granite Soil (불포화된 화강풍화토에 대한 공학적 특성분석을 위한 실험적 연구)

  • Kim, Joon-Seok
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.577-585
    • /
    • 2020
  • Purpose: The presence of the matric suction in unsaturated soil increases the stability of the slope, but the reduction of the matric suction due to precipitation can cause sudden slope failure, resulting in a major disaster. In this paper, engineering characteristics in unsaturated state were analyzed for granite weathering soil, which is the representative mountain soil of Korea. Method: Experiments and analysis were conducted on granulated weathering soil as unsaturated shear strength relationships for moisture characteristic curves, unsaturated injection curves, and matric suction under unsaturated conditions. Result: It was analyzed that a rapid change in the matric suction for volumetric water content occurs compared to the case where the particle size distribution is poor and the particle size distribution is good. A good case for the particle size distribution indicates a relatively small permeability coefficient at the same matric suction capacity compared to a poor case. The greater thematric suction, the greater the shear strength. Conclusion: For Korea's representative soil, granulated weathering soil, the functional characteristic curves, unsaturated permeability coefficients, unsaturated shear strength, etc., which are engineering characteristics in unsaturated state, were tested to secure each correlation.

Development of Constitutive Model for the Prediction of Behaviour of an Unsaturated Clayey Soil (불포화 점성토의 거동예측을 위한 구성식 개발)

  • 송창섭;장병욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.101-110
    • /
    • 1996
  • The aim of the work described in this paper is to develope a constitutive model for the prediction of an unsaturated clayey soil and to confirm the application of the model. To this end a series of suction controlled isotropic and triaxial compression tests are conducted on clayey soils. Matric suction is controlled by the axis translation technique using high air entry ceramic disk. Total volume change, air and water volume changes are measured by the device made for the experiment. The specimens are compacted by dynamic compaction using a half of Proctor compaction energy with the water contents of 5% drier than the optimum moisture contents. From test results, volume changes and deviator stresses are analyzed at each state and their relationships are formulated. And the application of the model to clayey soils is confirmed by the comparison between test and predicted results. During drying-wetting and loading-unloading processes for isotropic states, the agreement between predicted and test results are satisfactory. And predicted deviator stresses are well agreed with the test results in shearing process, but volumetric strain is not well agreed with the test results in high suctions.

  • PDF

Site Characteristics and Carbon Dynamics of the Gwangneung Deciduous Natural Forest in Korea

  • Lim, Jong-Hwan;Shin, Joon-Hwan;Kim, Choonsig;Oh, Jeong-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.163-163
    • /
    • 2003
  • The study area, Kwangneung Experiment Forest (KEF) is located on the west-central portion of Korean peninsula and belongs to a cool-temperate broadleaved forest zone. At the old-growth deciduous forest near Soribong-peak (533.1m) in KEF, we have established a permanent plot and a flux tower, and the site was registered as a KLTER site and also a KoFlux site. In this study, we aimed to present basic ecological characteristics and synthetic data of carbon budgets and flows, and some monitoring data which are essential for providing important parameters and validation data for the forest dynamics models or biogeochemical dynamics models to predict or interpolate spatially the changes in forest ecosystem structure and function. We made a stemmap of trees in 1 ha plot and analyzed forest stand structure and physical and chemical soil characteristics, and estimated carbon budgets by forest components (tree biomass, soils, litter and so on). Dominant tree species were Quercus serrata and Carpinus laxiflora, and accompanied by Q. aliena, Carpinus cordata, and so on. As a result of a field survey of the plot, density of the trees larger than 2cm in DBH was 1,473 trees per ha, total biomass 261.2 tons/ha, and basal area 28.0 m2/ha. Parent rock type is granite gneiss. Soil type is brown forest soil (alfisols in USDA system), and the depth is from 38 to 66cm. Soil texture is loam or sandy loam, and its pH was from 4.2 to 5.0 in the surface layer, and from 4.8 to 5.2 in the subsurface layer. Seasonal changes in LAI were measured by hemispherical photography at the l.2m height, and the maximum was 3.65. And the spatial distributions of volumetric soil moisture contents and LAIs of the plot were measured. Litterfall was collected in circular littertraps (collecting area: 0.25m2) and mass loss rates and nutrient release patterns in decomposing litter were estimated using the litterbag technique employing 30cm30cm nylon bags with l.5mm mesh size. Total annual litterfall was 5,627 kg/ha/year and leaf litter accounted for 61% of the litterfall. The leaf litter quantity was highest in Quercus serrata, followed by Carpinus laxiflora and C. cordata, etc. Mass loss from decomposing leaf litter was more rapid in C. laxiflora and C. cordata than in Q. serrata litter. About 77% of C. laxiflora and 84% of C. cordata litter disappeared, while about 48% in Q. serrata litter lost over two years. The carbon pool in living tree biomass including below ground biomass was 136 tons C/ha, and 5.6 tons C/ha is stored in the litter layer, and about 92.0 tons C/ha in the soil to the 30cm in depth. Totally more than about 233.6 tons C/ha was stored in DK site. And then we have drawn a schematic diagram of carbon budgets and flows in each compartment of the KEF site.

  • PDF

Studies on the Frost Heave Revelation and Deformation Behaviour due to Thawing of Weathered Granite Soils (화강암 풍화토의 동상 발현 및 융해에 따른 변형 거동에 관한 연구)

  • 류능환;최중대;류영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.61-71
    • /
    • 1995
  • Natural ground is a composite consisted of the three phases of water, air and soil paircies. Among the three components, water as a material is weU understood but soil particles are not in foundation engineering. Especially, weathered granite soil generally shows a large volumetric expansion when they freeze. And, the stability and durability of the soil have shown decreased with repetitive freezing and thawing processes. These unique charcteristics may cause various construction and management problems if the soil is used as a construction material and foundation layers. This project was initiated to investigate the soil's physical and engineering characteristics resulting from freezing and freezing-thawing processes. Research results may be used as a basic data in solving various problems related to the soil's unique characteristics. The following conclusions were obtained: The degree of decomposition of weathered granite soil in Kangwon-do was very different between the West and East sides of the divide of the Dae-Kwan Ryung. Soil particles distributed wide from very coarse to fine particles. Consistency could be predicted with a function of P200 as LL=0.8 P200+20. Permeability ranged from 10-2 to 10-4cm/sec, moisture content from 15 to 20% and maximum dry density from 1.55 to 1.73 g /cmΥ$^3$ By compaction, soil particles easily crushed, D50 of soil particles decreased and specific surface significantly increased. Shear characteristics varied wide depending on the disturbance of soil. Strain characteristics influenced the soil's dynamic behviour. Elastic failure mode was observed if strain was less than 1O-4/s and plastic failure mode was observed if strain was more than 10-2/s. The elastic wave velocity in the soil rapidly increased if dry density became larger than 1.5 g /cm$^3$ and these values were Vp=250, Vg= 150, respectively. Frost heave ratio was the highest around 0 $^{\circ}C$ and the maximum frost heave pressure was observed when deformation ratio was less than 10% which was the stability state of soil freezing. The state had no relation with frost depth. Over freezing process was observed when drainage or suction freezing process was undergone. Drainage freezing process was observed if freezing velocity was high under confined pressure and suction frost process was occurred if the velocity was low under the same confined process.

  • PDF

Temperature Sensitivity Analysis of TDR Moisture Content Sensor for Road Pavement (도로하부 함수비 계측을 위한 TDR 방식 함수비 센서 온도 민감도 분석)

  • Cho, Myunghwan;Lee, Yoonhan;Kim, Nakseok;Jee, Keehwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.329-336
    • /
    • 2013
  • The infrastructure of flexible pavement is composed of aggregate subbase, anti-frost layer, and subgrade. In particular, the subgrade performance is affected by climates such as frost action and precipitation. The method of TDR(Time Domain Reflectometry) sensors to measure moisture contents in subgrade layer has been used in the research. Due to the TDR method using dielectric permitivity of soil and water, the sensors can be affected by the low subgrade temperatures. The air temperatures frequently drops below $-20^{\circ}C$ in the winter in Korea. As a result, it is necessary to estimate the accuracy of the TDR moisture sensors in the range of below zero temperatures. In this study, the subgrade temperatures of lower than $-2^{\circ}C$ were extended to evaluate temperature sensitivity of the TDR moisture sensors. The test results revealed that the moisture contents around the sensors were reduced while those of the upper part of specimen showed a tendency to increase as the specimen surface temperature drops below zero under the volumetric moisture contents(VMC) of 20% and 30%. However, the impact of temperature on the function of the sensor at lower water contents was found to be negligible if any.

A Characteristics of Shear Strength and Deformation of Decomposed Granite Soil (화강토의 전단강도 및 변형특성)

  • 박병기;이강일
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.177-198
    • /
    • 1997
  • Since decomposed granite soil shows various characteristics of shear behavior dependent on initial conditions such as weathering degree and grain breakage, it is nacessary to invert ligate stress -strain relationship and changes of shear characteristics for different initial conditions. Associated with abovefnentioned view, direct shear tests, and triaxial compression tutsts(Ef, CD) were carried out in this study for undisturbed and disturbed compacted weathered granite samples obtained from 4 construction work sites with the various weathering degree and components of parent rocks. The deformation behavior of undisturbed samples under small confining stress shows hardening to softening, which is similar to that of over nsolidated clay whereas disturbed weathered granite soils do hardeningfonstant regardless of weathering degree, which is also similar to sedimentary clay. Conventional direct shear-tests for undisturbed samples show a tendency to overestimate cohesion. It is possidle to approximate stress ratio(q/p') and volumetric increment ratio(dv/ds) in the triaxital compression tests by an equation, ($dv/d\varepsilon,=\alpha(M-\eta))$ irrespective of moisture content, weathering degree and disturbance.

  • PDF