• 제목/요약/키워드: VOCs analysis

검색결과 327건 처리시간 0.031초

흡착 열탈착 장치와 GC/MS를 이용한 휘발성 유기화합물의 분석과 악취원인 성분의 예측 - 음식물 퇴비화 과정에서 발생되는 악취분석의 예 - (Analysis of Volatile Organic Compounds by GC/MS with the Thermal Desorber and Characterization of the Major Components Attributing to Malodor -An Analytical Example of the Odor Emitted from the Compost of Food Waste-)

  • 유미선;양성봉;안정수
    • 분석과학
    • /
    • 제15권1호
    • /
    • pp.80-86
    • /
    • 2002
  • 흡착/열탈착/GC/MS를 이용하여 우리나라와 일본의 법정 악취성분을 한 컬럼으로 동시분석이 가능한가를 검토하였다. 트리메틸아민, 아세트알데히드, 메틸메르캅탄, 이메틸황 은 대략적인 농도를 추정할 수 있었으며, 스티렌, 이황화메틸, 이황화이메틸 그리고 프로피온알데히드 n-부틸알데히드 i-부틸알데히드 n-발레르알데히드 i-발레르알데히드, 아세트산에틸, 톨로엔, 자일렌, 메틸이소부틸케톤, 이소부탄올에 대해서는 최소감지농도까지 검출할 수 있음을 확인할 수 있었다. 악취성분의 동시 분석 예로서 음식물 쓰레기의 퇴비화 과정에서 발생되는 휘발성 성분을 농축시켜 흡착/열탈착/GC/MSD에 의해 분석하고 각 성분의 농도와 최소 냄새감지 농도로부터 악취원인 성분을 예측하였다. 분석결과 34가지 물질에 대해 확인하였고, 이 중 트리메틸아민, 이소발레르알데히드, 메틸메르캅탄, 메틸알리황, 이메틸황, 아세트알데히드, 에탄올, n-부틸알데히드의 순으로 악위에 기여할 것으로 예상되었다.

열처리 실리카겔의 염소계 휘발성 유기화합물 흡착특성 연구 (Characteristics of Chlorinated VOCs Adsorption over Thermally Treated Silica Gel)

  • 남경수;권상숙;유경선
    • 공업화학
    • /
    • 제18권3호
    • /
    • pp.245-250
    • /
    • 2007
  • 실리카겔의 열처리 온도에 따른 1,2-dichlorobenzene의 흡착 특성을 모멘트 법으로 고찰하였다. 실리카겔의 열처리 온도는 150, 500, $800^{\circ}C$로 변화시켰으며 고정층 반응기를 사용하여 TCD (Thermal Conductivity Detector)가 장착된 기체크로마토 그래프에서 1,2-dichlorobenzene의 펄스 응답곡선을 측정하였다. 1,2-dichlorobenzene의 평형흡착상수와 표면 흡착열은 열처리 온도 $500^{\circ}C$에서 가장 높은 값을 나타내었다. 열처리 온도가 증가함에 따라 실리카겔 표면의 수분과 OH 작용기가 제거되어 1,2-dichlorobenzene과의 상호작용이 증가한 것으로 판단된다. 고온인 $800^{\circ}C$에서 열처리한 실리카겔은 비표면적이 감소하여 평형흡착상수와 흡착열, 모두 감소한 것으로 사료된다. 모멘트 해석으로 계산된 축분산 계수는 $0.046{\times}10^{-4}{\sim}1.033{\times}10^{-4}m^2/sec$였으며 기공 내의 확산계수는 $500^{\circ}C$ 열처리 실리카겔에서 가장 낮은 것으로 나타났다.

부산시 해안 및 내륙지역에서 광화학 오염물질의 농도 차이에 영향을 주는 화학 및 기상조건 분석 (Analysis of Chemical and Meteorological Effects on the Concentration Difference of Photochemical Air Pollutants between Coastal and Inland Regions in Busan)

  • 송상근;손장호
    • 한국환경과학회지
    • /
    • 제17권10호
    • /
    • pp.1169-1182
    • /
    • 2008
  • The chemical and meteorological effects on the concentration variations of air pollutants ($O_3$ and its precursors) were evaluated based on ground observation data in coastal and inland regions, Busan during springs and summers of 2005-2006. For the purpose of this study, study areas were classified into 5 categories: coastal area (CA), industrial area (IA), downtown area (DA), residential area (RA), and suburban area (SA). Two sites of Dongsam (DS) and Yeonsan (YS) were selected for the comparison purpose between the coastal and inland regions. $O_3$ concentrations in CA and SA were observed to be highest during spring (e.g., 40 ppb), whereas those in DA and RA were relatively low during summer (e.g., $22\sim24$ ppb). It was found that $O_3$ concentrations in IA were not significantly high although high VOCs (especially toluene of about 40 ppb) and $NO_x$ ($\geq$ 35 ppb) were observed. On the other hand, the concentration levels of $O_3$ and $PM_{10}$ at the DS site were significantly higher than those at the YS site, but $NO_x$ was slightly lower than that at the YS site. This might be caused by the photochemical activity and meteorological conditions (e.g., sea-land breeze and atmospheric stagnance). When maximum $O_3$ (an index of photochemical activity) exceeds 100 ppb, the contribution of secondary $PM_{10}\;((PM_{10})_{SEC})$ to total observed $PM_{10}$ concentrations was estimated up to 32% and 17% at the DS and YS sites, respectively. In addition, the diurnal variations of $(PM_{10})_{SEC}$ at the DS site were similar to those of $O_3$ regardless of season, which suggests that they are mostly secondary $PM_{10}$ produced from photochemical reactions.

활성탄 함유 폴리우레탄 담체를 사용하는 바이오필터에 의한 가스상 톨루엔의 처리 (Biofiltration of Gaseous Toluene Using Activated Carbon Containing Polyurethane Foam Media)

  • 알탐그렐 아말사나;신원식;최정학;최상준
    • 한국환경과학회지
    • /
    • 제15권6호
    • /
    • pp.513-525
    • /
    • 2006
  • In recent decades, biofiltration has been widely accepted for the treatment of contaminated air stream containing low concentration of odorous compounds or volatile organic compounds (VOCs). In this study, conventional biofilters packed with flexible synthetic polyurethane (PU) foam carriers were operated to remove toluene from a contaminated air stream. PU foams containing various amounts of pulverized activated carbon (PAC) were synthesized for the biofilter media and tested for toluene removal. Four biofilter columns were operated for 60 days to remove gaseous toluene from a contaminated air stream. During the biofiltration experiment, inlet toluene concentration was in the range of 0-150 ppm and EBRT (i.e., empty bed residence time) was kept at 26-42 seconds. Pressure drop of the biofilter bed was less than 3 mm $H_2O/m$ filter bed. The maximum removal capacity of toluene in the biofilters packed with PU-PAC foam was in the order of column II (PAC=7.08%) > column III (PAC=8.97%) > column I (PAC=4.95%) > column IV (PAC=13.52%), while the complete removal capacity was in the order of column II > column I > column III > column IV. The better biofiltration performance in column II was attributed to higher porosity providing favorable conditions for microbial growth. The results of biodegradation kinetic analysis showed that PU-PAC foam with 7.08% of PAC content had higher maximum removal rate ($V_m$=14.99 g toluene/kg dry material/day) than the other PU-PAC foams. In overall, the performance of biofiltration might be affected by the structure and physicochemical properties of PU foam induced by PAC content.

광촉매 활용을 위한 실리케이트 기반 표면 침투제를 적용한 콘크리트의 역학적 성능 평가 (Mechanical Performance Evaluation in Concrete Impregnated with Silicate for TiO2 Utilization)

  • 김혁중;김영기;권성준
    • 한국건설순환자원학회논문집
    • /
    • 제6권2호
    • /
    • pp.108-114
    • /
    • 2018
  • 콘크리트 구조물은 사용기간 동안 표면 열화 및 오염으로 인해 미관의 저하 및 내구성 저하가 발생된다. 최근 들어 광촉매(photocatalyst)를 이용하여 유기산화물을 제거하고 표면자기정화(self cleaning) 성능을 개선하려는 연구가 시도되고 있다. 본 논문은 실리케이트 기반 광촉매 함침을 위한 기초연구로서 CS와 SC 두 가지 함침 용액을 대상으로 하였다. 실리케이트 기반 용액의 점성과 표면장력을 평가하였으며 콘크리트에 적용하여 부착강도를 평가하였다. 또한 실리케이트 용액에 침지된 콘크리트에 대하여, 광촉매 용액의 침지 및 분무를 한 후 콘크리트 강도 평가와 SEM을 통한 표면상태를 조사하였다. 실리케이트 용액의 침지 후 30분간 기건 상태를 유지하고 분무하는 방법이 가장 효과적으로 광촉매의 표면 흡착을 유도하는 것으로 평가되었으며, 강도 개선에도 효과적임을 알 수 있다.

미국 내 LEED 그린빌딩의 지속가능한 업무공간 사례 연구 - 실내 평가요소 중 재료 및 자원을 중심으로 - (Case Study on Sustainable office space of the LEED Green Building in the United States - Focused on the Materials and Resources of Indoor Evaluation Factors -)

  • 하숙녕;한영호
    • 한국실내디자인학회논문집
    • /
    • 제22권2호
    • /
    • pp.176-185
    • /
    • 2013
  • (Background)In modern industrial society, the design industry failed to observe the law of nature, destructing it. Regardless its intention, the design industry destructed the environment so that it can't maintain the future life because of waste and disaster. For the purpose, it is important to adopt the technology to reuse the waste resource generated by building or minimize the damage to environment for the resource that can't be recycled. (Methods)On the assumption that the material and resource can be an alternative plan for the design that can make environment be sustained, the study analyzed materials and resources out of superior office space of USA, which were selected by LEED Green Building Rating System. (Results)The analysis result revealed that all cases reused main structural part of existing building and indoor and various materials were reused or recycled. Especially, the materials without or with low amount of VOCs and formaldehyde were used. In order to reduce construction waste, the finish of existing building was exposed as it was, 50% of reused materials were used or disassemblable materials were used. When regional materials are used, there is an advantage to reduce transportation cost and recycle the materials rapidly. Lastly, the environment-friendly certified by FSC was used in all cases. (Conclusion)After all, the material is one of the space design strategies sensitive to environment so it is important to select good material. Harmless, environment-friendly materials applied to sustainable office space contribute to the creation of healthy environment. In addition, the use of recycled materials and reused materials to minimize waste is also essential factor for creating sustainable space.

포항과 구미의 대규모 산단지역 대기 중 휘발성 유기화합물 농도 분포 특성에 관한 연구 (Characterization of Atmospheric Concentrations of Volatile Organic Compounds in Industrial Areas of Pohang and Gumi Cities)

  • 백성옥;김수현;김미현
    • Environmental Analysis Health and Toxicology
    • /
    • 제20권2호
    • /
    • pp.167-178
    • /
    • 2005
  • This study was carried out to evaluate the temporal, spatial, and seasonal variations of VOC, and to characterize the VOC concentrations in two large industrial complexes located in Pohang and Gumi cities. Twenty -four hours continuous sampling of selected VOC was made with STS 25 sequential tube samplers and double-bed adsorbent tubes. Air samples were collected every three hour interval for 7 consecutive days in each site during summer and winter. VOC were determined by thermal desorption coupled with GC/MS. A total of 27 VOCs of environmental concern were determined, including aliphatic, aromatic and halides. Generally. concentrations of toxic VOC were higher in Gumi than Pohang, and VOC levels in industrial areas were typically several-fold higher than those in residential areas. The most abundant VOC appeared to be toluene for both cities. However, chlorinated VOC were higher in Gumi than Pohang, while aromatic VOC were more abundant in Pohang than in Gumi. Two cities showed relatively different variations of VOC concentrations within a day. It is likely that traffic related sources are major factors affecting the VOC in Pohang, and industrial solvents usages are important sources in Gumi. These results imply that the occurrence and levels of atmospheric VOC are strongly dependent on the type of industries in each city. Therefore, in order to develop any control strategies or to establish the priority rankings for VOC in large industrial complexes, the type of industries and the occurrence of VOC in the atmosphere should be taken into consideration.

Expression pattern of floral scent genes in different flowering stages of Chrysanthemum cultivars

  • Mekapogu, Maniulatha;Ahn, Myung Suk;Yoo, Jong Hee;Jeong, Jae Ah;Park, Jong Taek;Kwon, Oh Keun
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.114-114
    • /
    • 2018
  • Among the various volatile organic compounds (VOCs) emitted by the plant, floral scent plays a key role in attracting pollinators for reproduction and mediates ecological interactions. Floral scent is an important trait and industry drives the competition for flowers with novel scents. Chrysanthemum is one of the well-known ornamental plants and is a popular cut flower across the world. Floral scent and the genes responsible for the floral scent emission are poorly studied in chrysanthemum. In the present study, floral scent and the expression pattern of floral scent genes were analyzed in two chrysanthemum cultivars 'Golden Egg' and 'Gaya Glory'. Initially, intensity of the floral scent in five developing stages of flower including 'budding (B), bud developing (BD), initial blooming (IB), almost open (AO) and open flower (OF)' was analyzed using electronic nose (E-nose) with six metal oxide sensors. Based on the distance analysis, different stages of flower showed different relative intensity of scent according to the sensory evaluation. Although the scent pattern differed by stage, scent intensity was strongest in the OF stage in the completely opened flower in both the cultivars. Further, expression pattern of six genes in the floral scent pathway including FDS, IDI, ISPH, TPS2, TPS5 and TPS6 was observed in all the five stages of the flower in both the cultivars. The expression pattern of all the six genes differed by stage and the terpene synthase genes TPS2, TPS5 and TPS6 showed good expression levels in the $5^{th}$ flower stage compared to other stages. This study provides a preliminary data for understanding the regulation of floral scent in chrysanthemum.

  • PDF

공기 중 메틸에틸케톤 제어를 위한 Pilot-Scale 흡수 시스템의 운영인자 분석 (Analysis of Operation Parameters of Pilot-Scale Packed-Absorption System for Airborne Methyl Ethyl Ketone Control)

  • 조완근;김왕태
    • 한국환경과학회지
    • /
    • 제20권4호
    • /
    • pp.501-509
    • /
    • 2011
  • Unlike many laboratory-scale studies on absorption of organic compounds (VOCs), limited pilot-scale studies have been reported. Accordingly, the present study was carried out to examine operation parameters for the effective control of a hydrophilic VOC (methyl ethyl ketone, MEK) by applying a circular pilot-scale packed-absorption system (inside diameter 37 cm ${\times}$ height 167 cm). The absorption efficiencies of MEK were investigated for three major operation parameters: input concentration, water flow rate, and ratio of gas flow-rate to washing water amount (water-to-gas ratio). The experimental set-up comprised of the flow control system, generation system, recirculation system, packed-absorption system, and outlet system. For three MEK input concentrations (300, 350, and 750 ppm), absorption efficiencies approached near 95% and then, decreased gradually as the operation time increased, thereby suggesting a non-steady state condition. Under these conditions, higher absorption efficiencies were shown for lower input concentration conditions, which were consistent with those of laboratory-scale studies. However, a steady state condition occurred for two input concentration conditions (100 and 200 ppm), and the difference in absorption efficiencies between these two conditions were insignificant. As supported by an established gas-liquid absorption theory, a higher water flow rate exhibited a greater absorption efficiency. Moreover, as same with the laboratory-scale studies, the absorption efficiencies increased as water-to-gas ratios increased. Meanwhile, regardless of water flow rates or water-to-gas ratios, as the operation time of the absorption became longer, the pH of water increased, but the elevation extent was not substantial (maximum pH difference, 1.1).

Ecotoxicological effects of ballast water effluent teated by an electrolytic method on marine environment

  • Kim, Tae Won;Kim, Keun-Yong;Shon, Myung-Baek;Kim, Young-Soo;Lee, Ji Hyun;Moon, Chang Ho;Son, Min Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권8호
    • /
    • pp.1010-1020
    • /
    • 2014
  • Ballast water effluent treated by an electrolytic method contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for three marine pelagic organisms, i.e., diatom Skeletonema costatum, rotifer Brachionus plicatilis and fish Paralichthys olivaceus. The biological toxicity test revealed that S. costatum was the only organism that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 12.5%, 25.0% and 83.3%, respectively, at brackish water condition. In contrast, it showed insignificant toxicity at seawater condition. B. plicatilis and P. olivaceus also showed no toxicities to the effluent at the both salinity conditions. Meanwhile, chemical analysis revealed that the ballast water effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 20 DBPs including bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs) and chloropicrin. Based on ERA, the 20 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. Except monobromoacetic acid, the ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other 19 DBPs did not exceed 1. Thus, our results of WET testing and ERA indicated that the ballast water effluent treated by electrolysis and subsequently neutralization was considered to have no adverse impacts on marine environment.