• Title/Summary/Keyword: VMAT

Search Result 130, Processing Time 0.025 seconds

Three-dimensional dose reconstruction-based pretreatment dosimetric verification in volumetric modulated arc therapy for prostate cancer

  • Jeong, Yuri;Oh, Jeong Geun;Kang, Jeong Ku;Moon, Sun Rock;Lee, Kang Kyoo
    • Radiation Oncology Journal
    • /
    • v.38 no.1
    • /
    • pp.60-67
    • /
    • 2020
  • Purpose: We performed three-dimensional (3D) dose reconstruction-based pretreatment verification to evaluate gamma analysis acceptance criteria in volumetric modulated arc therapy (VMAT) for prostate cancer. Materials and Methods: Pretreatment verification for 28 VMAT plans for prostate cancer was performed using the COMPASS system with a dolphin detector. The 3D reconstructed dose distribution of the treatment planning system calculation (TC) was compared with that of COMPASS independent calculation (CC) and COMPASS reconstruction from the dolphin detector measurement (CR). Gamma results (gamma failure rate and average gamma value [GFR and γAvg]) and dose-volume histogram (DVH) deviations, 98%, 2% and mean dose-volume difference (DD98%, DD2% and DDmean), were evaluated. Gamma analyses were performed with two acceptance criteria, 2%/2 mm and 3%/3 mm. Results: The GFR in 2%/2 mm criteria were less than 8%, and those in 3%/3 mm criteria were less than 1% for all structures in comparisons between TC, CC, and CR. In the comparison between TC and CR, GFR and γAvg in 2%/2 mm criteria were significantly higher than those in 3%/3 mm criteria. The DVH deviations were within 2%, except for DDmean (%) for rectum and bladder. Conclusions: The 3%/3 mm criteria were not strict enough to identify any discrepancies between planned and measured doses, and DVH deviations were less than 2% in most parameters. Therefore, gamma criteria of 2%/2 mm and DVH related parameters could be a useful tool for pretreatment verification for VMAT in prostate cancer.

Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer

  • Mattes, Malcolm D.;Zhou, Ying;Berry, Sean L.;Barker, Christopher A.
    • Radiation Oncology Journal
    • /
    • v.34 no.2
    • /
    • pp.145-155
    • /
    • 2016
  • Purpose: Radiation therapy targeting axilla and groin lymph nodes improves regional disease control in locally advanced and high-risk skin cancers. However, trials generally used conventional two-dimensional radiotherapy (2D-RT), contributing towards relatively high rates of side effects from treatment. The goal of this study is to determine if three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or volumetric-modulated arc therapy (VMAT) may improve radiation delivery to the target while avoiding organs at risk in the clinical context of skin cancer regional nodal irradiation. Materials and Methods: Twenty patients with locally advanced/high-risk skin cancers underwent computed tomography simulation. The relevant axilla or groin planning target volumes and organs at risk were delineated using standard definitions. Paired t-tests were used to compare the mean values of several dose-volumetric parameters for each of the 4 techniques. Results: In the axilla, the largest improvement for 3D-CRT compared to 2D-RT was for homogeneity index (13.9 vs. 54.3), at the expense of higher lung $V_{20}$ (28.0% vs. 12.6%). In the groin, the largest improvements for 3D-CRT compared to 2D-RT were for anorectum $D_{max}$ (13.6 vs. 38.9 Gy), bowel $D_{200cc}$ (7.3 vs. 23.1 Gy), femur $D_{50}$ (34.6 vs. 57.2 Gy), and genitalia $D_{max}$ (37.6 vs. 51.1 Gy). IMRT had further improvements compared to 3D-CRT for humerus $D_{mean}$ (16.9 vs. 22.4 Gy), brachial plexus $D_5$ (57.4 vs. 61.3 Gy), bladder $D_5$ (26.8 vs. 36.5 Gy), and femur $D_{50}$ (18.7 vs. 34.6 Gy). Fewer differences were observed between IMRT and VMAT. Conclusion: Compared to 2D-RT and 3D-CRT, IMRT and VMAT had dosimetric advantages in the treatment of nodal regions of skin cancer patients.

Evaluation of Treatment Plan Quality between Magnetic Resonance-Guided Radiotherapy and Volumetric Modulated Arc Therapy for Prostate Cancer

  • Chang Heon Choi;Jin Ho Kim;Jaeman Son;Jong Min Park;Jung-in Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.121-128
    • /
    • 2022
  • Purpose: This study evaluated the quality of plans based on magnetic resonance-guided radiotherapy (MRgRT) tri-Co-60, linac, and conventional linac-based volumetric modulated arc therapy (linac-VMAT) for prostate cancer. Methods: Twenty patients suffering from prostate cancer with intermediate risk who were treated by MAT were selected. Additional treatment plans (primary and boost plans) were generated based on MRgRT-tri-Co-60 and MRgRT-linac. The planning target volume (PTV) of MRgRT-based plans was created by adding a 3 mm margin from the clinical target volume (CTV) due to high soft-tissue contrast and real-time motion imaging. On the other hand, the PTV of conventional linac was generated based on a 1 cm margin from CTV. The targets of primary and boost plans were prostate plus seminal vesicle and prostate only, respectively. All plans were normalized to cover 95% of the target volume by 100% of the prescribed dose. Dosimetric characteristics were evaluated for each of the primary, boost, and sum plans. Results: For target coverage and conformity, the three plans showed similar results. In the sum plans, the average value of V65Gy of the rectum of MRgRT-linac (2.62%±2.21%) was smaller than those of MRgRT tri-Co-60 (9.04%±3.01%) and linac-VMAT (9.73%±7.14%) (P<0.001). In the case of bladder, the average value of V65Gy of MRgRT-linac was also smaller. Conclusions: In terms of organs at risk sparing, MRgRT-linac shows the best value while maintaining comparable target coverage among the three plans.

Evaluation of the Usefulness for VMAT of multiple brain metastasis using jaw tracking (Jaw tracking을 이용한 다발성 뇌 전이의 용적세기조절회전치료에 대한 유용성 평가)

  • Kim, Tae Won;Yoo, Soon Mi;Jeon, Soo Dong;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.73-81
    • /
    • 2018
  • Purpose : The aims of this study were to compare and assess the effectiveness of Volumetric Modulated Arc Therapy(VMAT) using jaw tracking(JT) and fixed jaw(FJ) in radiation therapy of multiple brain metastasis. Methode and material : Among the patients with Multiple Brain Metastasis treated with jaw tracking, 10 patients with more than 6 tumors and with the size of radiation field $14{\times}14cm^2$ or more were included. Each Treatment plans with jaw tracking(JT) and fixed jaw(FJ) was established with Eclipse (Ver. 13.6 Varian, USA). Gamma Index (3 mm, 3 % confidence interval - 95 %) and maximum dose difference were measured with an electronic portal imaging device(EPID). The $D_{max}$ and $D_{mean}$ of Organ At Risk(OAR) were assessed and compared, and the Conformity Index(CI) and Homogeneity Index(HI) were evaluated. Result : Evaluating jaw tracking(JT) and fixed jaw(FJ) outcomes, in all cases, Gamma Index met the permissible standard of 3 mm, 3 % confidence intervals of 95 %. The maximum dose difference value from the areas with leaf end transmission was measured at a maximum of 98.4 % and an average of 43.6 % in clockwise(CW), and 67.9 % and 41.0 % for each in Counter-Clockwise(CCW). With jaw tracking, the maximum value of $D_{max}$ for each normal organ in OAR decreased in 15.36 %~74.59 % with the average value decreasing in 2.84 %~39.80 %. The maximum value of $D_{mean}$ in OAR decreased in 27.90 %~65.23 %, with the average value decreasing in 7.70 %~41.71 %. No change has been found in Conformity Index and Homogeneity Index values. Conclusion : When Jaw tracking is used in treating patients with multiple brain metastasis with VMAT, the unnecessary exposure due to leakage and transmission of radiation in unspecified areas was reduced, without affecting the dose distribution of the planning target volume(PTV), and the availability of radiation therapy with lower doses in normal organs is expected.

  • PDF

A study on the effect of collimator angle on PAN-Pelvis volumetric modulated arc therapy (VMAT) including junction (접합부를 포함한 PAN-전골반암 VMAT 치료 계획 시 콜리메이터 각도의 영향에 관한 고찰)

  • Kim, Hyeon Yeong;Chang, Nam Jun;Jung, Hae Youn;Jeong, Yun Ju;Won, Hui Su;Seok, Jin Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.61-71
    • /
    • 2020
  • Purpose: To investigate the effect of collimator angle on plan quality of PAN-Pelvis Multi-isocenter VMAT plan, dose reproducibility at the junction and impact on set-up error at the junction. Material and method: 10 adult patients with whole pelvis cancer including PAN were selected for the study. Using Trubeam STx equipped with HD MLC, we changed the collimator angle to 20°, 30°, and 45° except 10° which was the default collimator angle in the Eclipse(version 13.7) and all other treatment conditions were set to be the same for each patient and four plans were established also. To evaluate these plans, PTV coverage, coverage index(CVI) and homogeneity index (HI) were compared and clinical indicators for each treatment sites in normal tissues were analyzed. To evaluate dose reproducibility at the junction, the absolute dose was measured using a Falmer type ionization chamber and dose changes at the junction were evaluated by moving the position of the isocenter in and out 1~3mm and setting up the virtual volume at the junction. Result: CVI mean value was PTV-45 0.985±0.004, PTV-55 0.998±0.003 at 45° and HI mean value was PTV-45 1.140±0.074, and PTV-55 1.031±0.074 at 45° which were closest to 1. V20Gy of the kidneys decreased by 9.66% and average dose of bladder and V30 decreased by 1.88% and 2.16% at 45° compared to 10° for the critical organs. The dose value at the junction of the plan and the actual measured were within 0.3% and within tolerance. At the junction, due to set-up error the maximum dose increased to 14.56%, 9.88%, 8.03%, and 7.05%, at 10°, 20°, 30°, 45°, and the minimum dose decreased to 13.18%, 10.91%, 8.42%, and 4.53%, at 10°, 20°, 30°, 45° Conclusion: In terms of CVI, HI of PTV and critical organ protection, overall improved values were shown as the collimator angle increased. The impact on set-up error at the junction by collimator angle decreased as the angle increased and it will help improve the anxiety about the set up error. In conclusion, the collimator angle should be recognized as a factor that can affect the quality of the multi-isocenter VMAT plan and the dose at the junction, and be careful in setting the collimator angle in the treatment plan.

Usability assessment of thermoplastic Bolus for skin VMAT radiotherapy (피부 병변에 대한 VMAT 치료 시 열가소성 bolus의 유용성 평가: case review)

  • Kim, Min Soo;Kim, Joo Ho;Shin, Hyun Kyung;Cho, Min Seok;Park, Ga Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.85-92
    • /
    • 2020
  • Purpose: To find out the advantages of thermoplastic bolus compared to conventional bolus, which is mainly used in clinical practice, We evaluated Two cases in terms of dose and location reproducibility to assess Usability of thermoplastic Bolus for skin VMAT radiotherapy. Materials and Methods: Two patient's treated with left breast skin lesion were simulated using thermoplastic Bolus and planned with 2arc VMAT. the prescription dose was irradiated to 95% or more of the target volume. We evaluated The reproducibility of the bolus position by measuring the length of the air gap in the CBCT (Cone Beam CT) image. to evaluate dose reproducibility, we compared The dose distribution in the plan and CBCT and measured in vivo for patient 2. Results: The difference between the air gap in patient 1's simulation CT and the mean air gap (M1) during 10 treatments in the CBCT image was -0.42±1.24mm. In patient 2, the difference between the average air gap between the skin and the bolus (M2) during 14 treatments was -1.08±1.3mm, and the air gap between the bolus (M3) was 0.49±1.16. The difference in the dose distribution between Plan CT and CBCT was -1.38% for PTV1 D95 and 0.39% for SKIN (max) in patient 1. In patient 2, PTV1 D95 showed a difference of 0.63% and SKIN (max) -0.53%. The in vivo measurement showed a difference of -1.47% from the planned dose. Conclusion: thermoplastic Bolus is simpler and takes less time to manufacture compared to those produced by 3D printer. Also compared to conventional bolus, it has high reproducibility in the set-up side and stable results in terms of dose delivery.

Optimal Density Assignment to 2D Diode Array Detector for Different Dose Calculation Algorithms in Patient Specific VMAT QA

  • Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Background: The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Materials and Methods: Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. Results and Discussion: For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were $97.2%{\pm}2.3%$, and $99.4%{\pm}1.1%$, respectively while those for 15 MV were $98.5%{\pm}0.85%$ and $99.8%{\pm}0.2%$, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. Conclusion: The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.

Evaluation of Dose Volume and Radiobiological Indices by the Dose Calculation Grid Size in Nasopharyngeal Cancer VMAT (비 인두암 체적 조절 호형 방사선 치료의 선량 계산 격자 크기에 따른 선량 체적 지수와 방사선 생물학적 지수의 평가)

  • Kang, Dong-Jin;Jung, Jae-Yong;Shin, Young-Joo;Min, Jung-Whan;Shim, Jae-Goo;Park, So-Hyun
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.265-272
    • /
    • 2020
  • The purpose of this study was to investigate the dose-volume indices and radiobiological indices according to the change in dose calculation grid size during the planning of nasopharyngeal cancer VMAT treatment. After performing the VMAT treatment plan using the 3.0 mm dose calculation grid size, dose calculation from 1.0 mm to 5.0 mm was performed repeatedly to obtain a dose volume histogram. The dose volume index and radiobiological index were evaluated using the obtained dose volume histogram. The smaller the dose calculation grid size, the smaller the mean dose for CTV and the larger the mean dose for PTV. For OAR of spinal cord, brain stem, lens and parotid gland, the mean dose did not show a significant difference according to the change in dose calculation grid size. The smaller the grid size, the higher the conformity of the dose distribution as the CI of the PTV increases. The CI and HI showed the best results at 3.0 mm. The smaller the dose calculation grid size, the higher the TCP of the PTV. The smaller the dose calculation grid size, the lower the NTCP of lens and parotid. As a result, when performing the nasopharynx cancer VMAT plan, it was found that the dose calculation grid size should be determined in consideration of dose volume index, radiobiological index, and dose calculation time. According to the results of various experiments, it was determined that it is desirable to apply a grid size of 2.0 - 3.0 mm.

The Effect of MLC Leaf Motion Constraints on Plan Quality and Delivery Accuracy in VMAT (체적조절호형방사선치료 시 갠트리 회전과 다엽콜리메이터의 이동 속도에 따른 선량분포 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Lee, Jeong-woo;Shin, Young-Joo;Kang, Dong-Jin;Jung, Jae-Yong
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.217-222
    • /
    • 2019
  • The purpose of this study is to evaluate the dose distribution by gantry rotation and MLC moving speed on treatment planning system(TPS) and linear accelerator. The dose analyzer phantom(Delta 4) was scanned by CT simulator for treatment planning. The planning target volumes(PTVs) of prostate and pancreas was prescribed 6,500 cGy, 5,000 cGy on VMAT(Volumetric Modulated Arc Therapy) by TPS while MLC speed changed. The analyzer phantom was irradiated linear accelerator using by planned parameters. Dose distribution of PTVs were evaluated by the homogeneity index, conformity index, dose volume histogram of organ at risk(rectum, bladder, spinal cord, kidney). And irradiated dose analysis were evaluated dose distribution and conformity by gamma index. The PTV dose of pancreas was 4,993 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(5,000 cGy). The dose of spinal cord, left kidney, and right kidney were accessed the lowest during 0.1 cm/deg, 1.5 cm/deg, 0.3 cm/deg. The PTV dose of prostate was 6,466 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(6,500 cGy). The dose of bladder and rectum were accessed the lowest during 0.3 cm/deg, 2.0 cm/deg. For gamma index, pancreas and prostate were analyzed the lowest error 100% at 0.8, 1.0 cm/deg and 99.6% at 0.3, 0.5 cm/deg. We should used the optimal leaf speed according to the gantry rotation if the treatment cases are performed VMAT.

Reproducibility evaluation of the use of pressure conserving abdominal compressor in lung and liver volumetric modulated arc therapy (흉복부 방사선 치료 시 압력 기반 복부압박장치 적용에 따른 치료 간 재현성 평가)

  • Park, ga yeon;Kim, joo ho;Shin, hyun kyung;Kim, min soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.71-78
    • /
    • 2021
  • Purpose: To evaluate the inter-fractional position and respiratory reproducibility of lung and liver tumors using pressure conserving type(P-type) abdominal compressor in volumetric modulated arc therapy(VMAT). Materials and methods: Six lung cancer patients and three liver cancer patients who underwent VMAT using a P-type abdominal compressor were included in this study. Cone-beam computed tomography(CBCT) images were acquired before each treatment and compared with planning CT images to evaluate the inter-fractional position reproducibility. The position variation was defined as the difference of position shift values between target matching and bone matching. 4-dimensional cone-beam computed tomography(4D CBCT) images were acquired weekly before treatment and compared with planning 4DCT images to evaluate the inter-fractional respiratory reproducibility. The respiratory variation was calculated by the magnitude of excursions by breathing. Results: The mean ± standard deviation(SD) of overall position variation values, 3D vector in the three translational directions were 1.1 ± 1.4 mm and 4.5 ± 2.8 mm for the lung and liver, respectively. The mean ± SD of respiratory variation values were 0.7 ± 3.4 mm (p = 0.195) in the lung and 3.6 ± 2.6 mm (p < 0.05) in the liver. Conclusion: The use of P-type compressor in lung and liver VMAT was effective for stable control of inter-fractional position and respiratory variation by reproduction of abdominal compression. Appropriate PTV margin must be considered in treatment planning, and image guidance before each treatment are required in order to obtain more stable reproducibility