• Title/Summary/Keyword: VLFS(Very Large Floating Structure)

Search Result 40, Processing Time 0.022 seconds

Experimental Study on the Hydroelastic Response of a Pontoon Type Structure with Nonuniform Mass and Stiffness (불균일 강성을 갖는 폰툰형 구조물의 유탄성 응답 특성에 관한 실험 연구)

  • Cho, Seok-Kyu;Hong, Sa-Young;Kim, Jin-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.34-40
    • /
    • 2004
  • Very Large Floating Structure(VLFS) is regarded as one of promising candidates for the future utilization of ocean space. VLFS has the merits of small environmental effect. short construction term, easiness for extension and removal. It is well known that hydroelastic response is one of major design concerns of such a huge structure. Most of studies on the hydroelastic analysis of VLFS assumed uniform mass and bending stiffness. In case of a floating hotel where noticeable change of mass and stiffness at the hotel part is expected. it is necessary to investigate the effect of nonuniform mass and bending stiffness on the hydroelastic response. A model test of a pontoon type VLFS with nonuniform bending stiffness carried out for performance evaluation of a floating marina-hotel-convention center is described in this paper. Through investigation of model test results and comparison with numerical analysis using eigenfunction method, effect of the variation of bending stiffness is discussed.

Motion Analyses for a Very Large Floating Structure with Dolphin Mooring Systems in Irregular Waves (불규칙파 중에서 돌핀 계류된 해상공항에 대한 운동)

  • H.Y. Lee;H. Shin;C.G. Lim;O.H. Kim;J.M. Kang;M.C. Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.10-18
    • /
    • 2001
  • The very large floating structure which can be used for as airport may be as large as several kilometer long and wide. The first order wave forces as well as wave drift forces are very important forces on such a very large floating structures. In the present study, the time simulation of motion responses for dolphin-moored VLFS in waves is presented. The hydrodynamic coefficients and wave forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The horizontal drift forces and mooring forces for dolphin systems are taken into account. As for numerical example, time domain analyses are carried out for a VLFS(Phase I) in irregular wave condition.

  • PDF

Hydroelastic Analysis for a Very Large Floating Structure by Pressure Distribution Method (압력분포법에 의한 초대형 부유식 해양구조물의 유탄성 해석)

  • H.Y. Lee;H. Shin;H.S. Shin;I.K. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.66-74
    • /
    • 2000
  • In this paper, hydroelastic responses of the very large floating structure are studied based on the linear potential theory. A theoretical method is developed to analyze the hydroelastic reponses of very large floating structures(VLFS) using the pressure distribution method and the modal expansion method. The singularities distributed on a zero draft plate at the free surfaces and hydrodynamic pressures are evaluated. The deflections of structure are expanded approximately in terms of natural mode functions of free-free beam. The calculated items are pressure distributions. vertical motions, hydrodynamic coefficients and bending moments of VLFS. The numerical results are compared with those measured by experiments.

  • PDF

Motion Analysis of a Very Large Floating Structure in Irregular Waves (불규칙파 중 초대형 부유식 해양 구조물에 대한 운동 해석)

  • 신현경;이호영;임춘규;신현수;박인규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.63-68
    • /
    • 2000
  • A very large floating structure has rather small motion characteristics as to the whole body, while the motion at end part of such structure becomes largest due to the elastic motion of the structure. This paper presents on the theoretical result on the relative motion characteristics and green water phenomena of VLFS in waves This phenomena affect not only to strength of the structure but also the determination of depth of structure. To predict motion responses of structure in regular waves, the source-dipole distribution method and F.E.M is used By irregular wave results, the probability of occurrence of green water and response of the structure were calculated.

  • PDF

Analysis Methods of Hydroelastic Responses for a Very Large Floating Structure (초대형 부유식 해양구조물의 유탄성 응답에 대한 해석 방법)

  • 이호영
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.19-27
    • /
    • 2000
  • In this paper hydroelastic responses of a very large floating structure(VLFS) are studied theoretically. We have been developed the source and dipole distribution method and pressure distribution method to evaluate the hydrodynamic pressures. The problem of vertical structural responses due to waves are calculated by using finite element method(FEM) and modal expansion method of a free-free beam Hydroelastic responses of VLFS in waves are computed by four methods developed in this paper. As a result the theoretical results of motion responses show good agreements with experimental ones.

  • PDF

A Visualization System of Very Large Floating Structure Using Processing of Hydro-elastic Analysis Data (유탄성 해석데이터 처리를 통한 초대형 해상구조물의 가상 목업 가시화 기술 개발)

  • Cha, Moohyun;Park, Seongwhan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.773-774
    • /
    • 2010
  • 본 연구에서는 초대형 부유식 해상 구조물(Very Large Floating Structure) 및 상부 구조물의 동적거동을 실시간 그래픽환경에서 가상 목업을 이용해 가시화하였다. 구조물 자체의 탄성 변형이 고려된 유탄성 응답해석 결과 데이터를 분석하고, 이를 실시간 가시화 시스템에 적용하기 위한 데이터 처리 방법을 소개하였으며, 3 차원 환경에서의 VLFS 및 해양파 가시화 결과와, VLFS 및 상부구조물 거동의 연동 결과를 소개하였다.

Simplified Static Analysis of Superstructure on Very Large Floating Structures subjected to Wave Loads (파랑하중을 받는 초대형 부유식 구조물 상부구조체의 실용정적해석법)

  • Song, Hwa-Cheol;Park, Hyo-Seon;Seo, Ji-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.519-526
    • /
    • 2003
  • For preliminary structural analysis of superstructures on very large floating structures(VLFS), superstructures are analyzed considering elastic deformations of barge type lower-structures subjected to wave loads. In this case, to consider the effect of wave loads on the superstructure, initial displacements at the support points of superstructures are evaluated as input data for the analysis. However, the evaluation and application of displacement loads are tedious and very time-consuming processes. Therefore, this paper proposes a simplified static analysis method to analyze the structural behaviors of superstructures on very large floating structures subjected to wave loads. In this study, the member forces due to the variation of beam span and the amplitude and period of wave load are analyzed by using an example 4 span -3 story structure and the amplification factors for beam moments are represented by the specific regression equation.

Hydroelastic Behavior for a Very Lagre Floating Structure of Poontoon-Type in Multi-Directional Irregular Waves (다방향불규칙파중의 Pontoon형의 초대형부유식해양구조물에 대한 유탄성응답 특성)

  • Kim, Chel-Hyun;Jo, Hyo-Jae;Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.83-90
    • /
    • 2006
  • Recently, as the technology of utilization for the ocean space is being advanced, floating structures are asked for being mare and mare huge-scale. A very large floating structure(VLFS) is considered as a flexible structure, because of a quite large length-to-breadth ratio and its geometrical flexibility. The main object of this study is to develop an accurate and convenient method on the hydroelastic response analysis of very large offshore structures on the real sea states. The numerical approach for the hydorelastic responses is based on the combination of the three dimensional source distribution methods, the dynamic response analysis method and the spectral analysis method. A model is considered as many rigid bodies connected elastic beam elements. The calculated results shaw good agreement with the experimental and calculated ones by Ohta.

Hydroelastic Responses for a VLFS close to a Breakwater by the Velocity Potential Continuation and Singularity Distribution Method (속도포텐셜접속법과 특이점분포법에 의한 방파제에 근접한 부유식 해상공항에 대한 유탄성 응답 해석)

  • Ho-Young Lee;Young-Ki Kwak;Jong-Hwan Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.11-18
    • /
    • 2002
  • In this paper, the method calculating hydroelastic responses of very large floating structure close to a breakwater in waves is presented. The source-dipole distribution method is used to calculate the generalized radiation problem considering breakwater effects and the diffraction problem is analyzed by using the source-dipole distribution andvelocity potential continuation method. The response of a VLFS is approximated by anexpansion in terms of a free-free beam. Calculated model is a VLFS with 1000m in length in a sea with a straight breakwater. The vertical displacements and bonding moments around a VLFS are calculated by variations for distance between a VLFS and a breakwater and incident wave angle to know the effect of a breakwater.

Dynamic Response Characteristics of Floating Structures According to Connection Types (부유식 구조물의 접합부 형태에 따른 동적응답 특성 연구)

  • Kim, Byoung-Wan;Hong, Sa-Young;Kyoung, Jo-Hyun;Cho, Seok-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.132-140
    • /
    • 2006
  • This paper investigates the characteristics of dynamic responses of floating structures with connections under sea wave loads. Direct method using higher order boundary element method (HOBEM) and finite element method (FEM) is adopted for numerical analysis. A 500 m-long and 250-m width very large floating structure (VLFS) with four units are considered in numerical analysis. Hinge connection and spring connection with various strength are considered as connection types. Displacements and stresses of VLFS according to the connection types are compared considering wave period and heading angle reduction.